-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
143 lines (122 loc) · 3.53 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "util.h"
// TODO: create functions to encode / decode words to embeddings
#define WINDOW 4
#define HIDDEN_LAYER_SIZE 5
#define EPOCHS 100
#define LEARNING_RATE 0.1
int main() {
Vocabulary v;
Sentence data[MAX_SENTENCE_NUMBER];
// create the vocabulary
createVocabulary(VOC_FILE_PATH, &v);
// tokenize the data
create_data(data);
// create training samples
int sample_size = 0;
char train_data[50][2][MAX_WORD_SIZE];
FILE *fp = fopen(DATA_FILE_PATH, "r");
int sentence_count;
fscanf(fp, "%d\n", &sentence_count);
for (int i = 0; i < sentence_count; i++) {
for (int j = 0; j < data[i].dim; j++) {
for (int k = j+1; k < data[i].dim && k < j + 1 + WINDOW; k++) {
// create couple of words
strcpy(train_data[sample_size][0], data[i].words[j]);
strcpy(train_data[sample_size][1], data[i].words[k]);
sample_size++;
}
}
}
// create the nn for embeddings
float w_h[v.dim][HIDDEN_LAYER_SIZE];
float b_h[HIDDEN_LAYER_SIZE];
float z_h[HIDDEN_LAYER_SIZE];
float w_o[HIDDEN_LAYER_SIZE][v.dim];
float b_o[v.dim];
float z_o[v.dim];
float d_h[HIDDEN_LAYER_SIZE];
float d_o[v.dim];
// random initialization
for (int i = 0; i < v.dim; i++) {
for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) {
w_h[i][j] = random_float();
}
}
for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) {
b_h[i] = random_float();
}
for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) {
for (int j = 0; j < v.dim; j++) {
w_o[i][j] = random_float();
}
}
for (int i = 0; i < v.dim; i++) {
b_o[i] = random_float();
}
// training
// train: data_train[i][0], target: data_train[i][1]
for (int e = 0; e < EPOCHS; e++) {
for (int s = 0; s < sample_size; s++) {
// feed forward
// first layer
for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) {
z_h[i] = b_h[i];
for (int j = 0; j < v.dim; j++) {
z_h[i] += w_h[i][j] * (encode(&v, train_data[s][0])->vect[j]);
}
}
// output layer
for (int i = 0; i < v.dim; i++) {
z_o[i] = b_o[i];
for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) {
z_o[i] += w_o[i][j] * z_h[j];
}
}
// activation
softmax(z_o, z_o, v.dim);
// backprop
// output layer
// calculate deltas
for (int i = 0; i < v.dim; i++) {
d_o[i] = (z_o[i] - (encode(&v, train_data[s][0])->vect[i])) * z_o[i] * (1 - z_o[i]);
}
// adjust weights
for (int i = 0; i < v.dim; i++) {
for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) {
w_o[i][j] -= LEARNING_RATE * d_o[i] * z_h[j];
}
}
// adjust biases
for (int i = 0; i < v.dim; i++) {
b_o[i] -= LEARNING_RATE * d_o[i];
}
// hidden layer
// calculate deltas
for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) {
d_h[i] = 0.0;
for (int j = 0; j < v.dim; j++) {
d_h[i] += d_o[j] * w_o[i][j];
}
d_h[i] *= z_h[i] * (1 - z_h[i]);
}
// adjust weight
for (i = 0; i < HIDDEN_LAYER_SIZE; i++) {
for (j = 0; j < v.dim; j++) {
w_h[i][j] -= LEARNING_RATE * d_h[i] * (encode(&v, train_data[s][0])->vect[j]);
}
}
// asdjust biases
for (i = 0; i < HIDDEN_LAYER_SIZE; i++) {
b_h[i] -= LEARNING_RATE * d_h[i];
}
}
}
// the weights of the hidden layer are the embeddings for the words
// example
printf("rome-italy: %f\n", distance(w_h[13], w_h[14], HIDDEN_LAYER_SIZE));
printf("rome-france: %f\n", distance(w_h[13], w_h[12], HIDDEN_LAYER_SIZE));
}