-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_data_collect.py
72 lines (48 loc) · 1.45 KB
/
face_data_collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as np
#initialise webcam
cap = cv2.VideoCapture(0)
#face Detection
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
skip = 0
face_data = []
dataset_path = "./data/"
file_name = input("Enter the name of person : ")
while True:
ret , frame = cap.read()
if(ret == False):
continue
#gray_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(frame,1.3,5)
if (len(faces)) == 0:
continue
faces = sorted(faces,key = lambda f:f[2]*f[3])
#pick the last face(largest area)
for face in faces[-1:]:
#draw bounding box
x,y,w,h = face
cv2.rectangle(frame,(x,y), (x+w,y+h), (0,255,255), 2)
#extract (crop out face)
offset = 10
face_section = frame[y-offset:y+h+offset, x-offset : x+w+offset]
face_section = cv2.resize(face_section,(100,100))
skip+=1
if skip%10==0:
face_data.append(face_section)
print(len(face_data))
#print(faces[-1:])
cv2.imshow("Frame" , frame)
cv2.imshow("Face Section" , face_section)
#cv2.imshow("gray_frame" , gray_frame)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('q'):
break
#convert face data list to numpy array
face_data = np.asarray(face_data)
face_data = face_data.reshape((face_data.shape[0],-1))
print(face_data.shape)
#save data in file system
np.save(dataset_path+file_name+'.npy',face_data)
print("Data saved successfully at " + dataset_path +file_name + ".npy")
cap.release()
cv2.destroyAllWindows()