diff --git a/tests/test_automatic_differentiation.py b/tests/test_automatic_differentiation.py index 024ee6b87..84b1e498e 100644 --- a/tests/test_automatic_differentiation.py +++ b/tests/test_automatic_differentiation.py @@ -8,7 +8,7 @@ import jaxsim.rbda import jaxsim.typing as jtp from jaxsim import VelRepr -from jaxsim.rbda.contacts import SoftContacts, SoftContactsParams, SoftContactsState +from jaxsim.rbda.contacts import SoftContacts, SoftContactsParams # All JaxSim algorithms, excluding the variable-step integrators, should support # being automatically differentiated until second order, both in FWD and REV modes. @@ -343,16 +343,13 @@ def test_ad_integration( model=model, velocity_representation=VelRepr.Inertial, key=subkey ) - # Make sure that the active contact model is SoctContacts. - assert isinstance(data.state.contact, SoftContactsState) - # State in VelRepr.Inertial representation. W_p_B = data.base_position() W_Q_B = data.base_orientation(dcm=False) s = data.joint_positions(model=model) W_v_WB = data.base_velocity() ṡ = data.joint_velocities(model=model) - m = data.state.contact.tangential_deformation + m = data.state.extended["tangential_deformation"] # Inputs. W_f_L = references.link_forces(model=model) @@ -406,7 +403,7 @@ def step( base_angular_velocity=W_v_WB[3:6], joint_velocities=ṡ, ), - contact=js.ode_data.SoftContactsState.build(tangential_deformation=m), + extended_state={"tangential_deformation": m}, ), ) @@ -425,7 +422,7 @@ def step( xf_s = data_xf.joint_positions(model=model) xf_W_v_WB = data_xf.base_velocity() xf_ṡ = data_xf.joint_velocities(model=model) - xf_m = data_xf.state.contact.tangential_deformation + xf_m = data_xf.state.extended["tangential_deformation"] return xf_W_p_B, xf_W_Q_B, xf_s, xf_W_v_WB, xf_ṡ, xf_m