-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmerge_results.py
89 lines (73 loc) · 2.66 KB
/
merge_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pandas as pd
output_path = 'path_to_output.xlsx'
codelet_info = [
('path_to_runtime_csv', 'path_to_batch_directory'),
]
merged = None
for runtime_csv_path, batch_path in codelet_info:
runtime_csv = pd.read_csv(runtime_csv_path)
runtime_csv.columns = pd.MultiIndex.from_product([['Run Info'], runtime_csv.columns])
src_info = f'{batch_path}/src_info.csv'
src_csv = pd.read_csv(src_info)
# sometimes the src_info.csv file needs some preprocessing
# below is some example code how to perform various tasks
# normalize column values to be merged
src_csv['name'] = 'LoopGen: ' + src_csv['name'] + '_de'
# add additional summarizing info
# instead of
#
# arrays
# 1
# 3+3 = 6
#
# make it
#
# arrays # total arrays refs
# 1 1
# 3+3 = 6 6
src_csv['# total array refs'] = src_csv['array refs']
src_csv.loc[
src_csv['array refs'].str.contains('='), '# total array refs'
] = src_csv['array refs'].str.split(' ', expand = True)[2]
# make header levels match
# instead of
#
# arrays scalars
# ... ...
#
# make it
#
# Src Info
# arrays scalars
src_csv.columns = pd.MultiIndex.from_product([['Src Info'], src_csv.columns])
# join by index
name_column = None
for col in runtime_csv.columns:
if col[1] == 'Name':
name_column = col
if name_column is None:
print('Unable to find "Name" column in the runtime info spreadsheet')
exit(1)
runtime_csv.set_index(name_column, inplace=True)
src_csv.set_index(('Src Info', 'name'), inplace=True)
joined = src_csv.merge(runtime_csv, left_index=True, right_index=True, how='left')
joined.reset_index(inplace=True)
# Also pre-process cores.xlsx
cores_path = f'{batch_path}/cores.xlsx'
cores_xlsx = pd.read_excel(cores_path, engine='openpyxl')
cores_xlsx['name'] = 'LoopGen: ' + cores_xlsx['name'] + '_de'
cores_xlsx.columns = pd.MultiIndex.from_product([['Code'], cores_xlsx.columns])
joined.set_index(('Src Info', 'name'), inplace=True)
cores_xlsx.set_index(('Code', 'name'), inplace=True)
joined = joined.merge(cores_xlsx, left_index=True, right_index=True, how='left')
joined.reset_index(inplace=True)
joined.drop(('Code', 'Unnamed: 0'), axis=1, inplace=True)
# accumulate (union) results
if merged is None:
merged = joined
else:
merged = pd.concat([merged, joined])
# clean up the index of concatenated results (they may restart at 0)
merged.reset_index(inplace=True)
merged.drop(('index', ''), axis=1, inplace=True)
merged.to_excel(output_path)