-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_results.py
51 lines (41 loc) · 1.62 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from model import CircleNet
from dataloader import SphereDataset
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import transforms
import argparse
def visualize_prediction(model, dataloader):
fig, axs = plt.subplots(3, 3, figsize=(15, 15))
for i, (image, label) in enumerate(dataloader):
image = image.to(device, dtype=torch.float32)
model = model.eval()
with torch.no_grad():
output = model(image).squeeze()
image = image.squeeze().cpu().numpy()
output = output.cpu().numpy()
label = label.numpy()
row = i // 3
col = i % 3
axs[row, col].imshow(image, cmap='gray')
axs[row, col].plot(label[0][0], label[0][1], 'go', label='True center')
axs[row, col].plot(output[0], output[1], 'ro', label='Predicted center')
axs[row, col].legend()
if i == 8:
break
plt.savefig('predictions.png')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='best_model.pth', help='Path to model')
args = parser.parse_args()
model_path = args.model_path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CircleNet()
model.to(device)
model.load_state_dict(torch.load(model_path))
transform = transforms.Compose([
transforms.ToTensor(),
])
dataset = SphereDataset(csv_file='labels.csv', root_dir='data/val/', transform=transform)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
visualize_prediction(model, dataloader)