-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
66 lines (51 loc) · 2.22 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
class Trainer:
def __init__(self, model, device, train_dataloader, valid_dataloader=None):
self.model = model
self.device = device
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
self.criterion = torch.nn.MSELoss()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
def train_one_epoch(self):
self.model.train()
running_loss = 0.0
for i, (images, labels) in enumerate(self.train_dataloader):
images = images.to(self.device)
labels = labels.to(self.device)
# Forward pass
outputs = self.model(images)
loss = self.criterion(outputs, labels)
# Backward and optimize
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
running_loss += loss.item()
return running_loss / len(self.train_dataloader)
def validate_one_epoch(self):
if not self.valid_dataloader:
return None
self.model.eval()
running_loss = 0.0
with torch.no_grad():
for images, labels in self.valid_dataloader:
images = images.to(self.device)
labels = labels.to(self.device)
outputs = self.model(images)
#print(outputs[0], labels[0])
loss = self.criterion(outputs, labels)
running_loss += loss.item()
return running_loss / len(self.valid_dataloader)
def train(self, num_epochs, save_path='best_model.pth'):
best_loss = float('inf')
for epoch in range(num_epochs):
train_loss = self.train_one_epoch()
valid_loss = self.validate_one_epoch()
if self.valid_dataloader:
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Valid Loss: {valid_loss:.4f}')
else:
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}')
# save the best model
if valid_loss and valid_loss < best_loss:
best_loss = valid_loss
torch.save(self.model.state_dict(), save_path)