-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate.py
183 lines (152 loc) · 5.03 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import json
import logging
import os
import sqlite3
import sys
from src.data.dataset import Dataset
from src.data.image import Channels
from src.data.transforms import get_transform
from src.inference.pipeline import load_model
from src.training.evaluate import evaluate, get_evaluator
from src.training.utils import collate_fn
from src.utils.db import dict_factory, get_dataset, get_image, get_labels, get_windows
import torch
num_loader_workers = 4
# Configure logger
logger = logging.getLogger("evaluate")
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s (%(name)s) (%(levelname)s): %(message)s")
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
def parse_args():
parser = argparse.ArgumentParser(description="Training script.")
# General
parser.add_argument(
"--model_dir",
help="Path to model and validation config json.",
default="./data/inference/frcnn_cmp2/3dff445",
)
parser.add_argument(
"--validation_data_dir",
help="Path to validation data directory containing preprocess folder.",
default="./data",
)
parser.add_argument(
"--metadata_path",
help="Path to sqlite database containing metadata",
default="./data/metadata.sqlite3",
)
args = parser.parse_args()
return args
def main(
model_dir: str, validation_data_dir: str, metadata_path: str
) -> None:
"""Run a validation pass on specified model.
Parameters
----------
model_dir: str
Path to dir containing model weights and configuration json.
validation_data_dir: str
Path to directory containing validation data.
metadata_path: str
Path to metadata sqlite file.
Returns
-------
: None
"""
with open(os.path.join(model_dir, "cfg.json")) as f:
cfg = json.load(f)
logger.info("Reading validation metadata.")
# Instantiate DB conn
db_path = os.path.abspath(metadata_path)
conn = sqlite3.connect(db_path)
conn.row_factory = dict_factory
# Get dataset specified in cfg from db
dataset_id = cfg["DatasetID"]
dataset = get_dataset(conn, dataset_id)
# Read test splits specified in config
val_splits = cfg["Options"]["TestSplits"]
# Get windows associated with val splits
windows = []
for split in val_splits:
windows.extend(get_windows(conn, dataset_id, split=split))
windows_with_labels = []
# Populate labels associated with each window from db
for window in windows:
if window["hidden"]:
continue
image = get_image(conn, window["image_id"])
labels = get_labels(conn, window["id"])
updated_window = window
updated_window["image"] = image
updated_window["labels"] = labels
windows_with_labels.append(updated_window)
conn.close()
model_cfg = cfg
options = model_cfg["Options"]
channels = Channels(model_cfg["Channels"])
task = dataset["task"]
model_cfg["Data"] = {}
if dataset.get("task"):
model_cfg["Data"]["task"] = dataset["task"]
if dataset.get("categories"):
model_cfg["Data"]["categories"] = dataset["categories"]
batch_size = options.get("BatchSize", 4)
chip_size = options.get("ChipSize", 0)
image_size = options.get("ImageSize", 0)
half_enabled = options.get("Half", True)
val_transforms = get_transform(cfg, options, options.get("ValTransforms", []))
val_data = Dataset(
dataset=dataset,
windows=windows,
channels=channels,
splits=val_splits,
transforms=val_transforms,
image_size=image_size,
chip_size=chip_size,
valid=True,
preprocess_dir=os.path.join(validation_data_dir, "preprocess"),
)
device = torch.device("cuda")
val_sampler = torch.utils.data.SequentialSampler(val_data)
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=batch_size,
sampler=val_sampler,
num_workers=num_loader_workers,
collate_fn=collate_fn,
)
# instantiate model from weights and config
model = load_model(
model_dir,
example=val_data[0],
device=device,
)
model.to(device)
model.eval()
evaluator = get_evaluator(task, options)
val_loss, _ = evaluate(
model,
device,
val_loader,
half_enabled=half_enabled,
evaluator=evaluator,
)
val_scores = evaluator.score()
val_score = val_scores["score"]
logger.info(f"Validation score {val_score}.")
logger.info(f"Validation loss {val_loss}.")
if task == "point":
# Log full val set confusion matrix
evaluator.log_metrics("class0", logger, use_wandb=False)
if task == "custom":
# Log full val set MAEs by attribute
evaluator.log_metrics(logger, use_wandb=False)
return None
if __name__ == "__main__":
args = parse_args()
args_dict = vars(args)
main(**args_dict)