-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
586 lines (525 loc) · 26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 15 10:34:45 2021
@author: 99488
"""
import matplotlib.colors as mcolors
import os
import scipy.io as sio
import numpy as np
import pandas as pd
import sys
sys.path.append(r'E:\OPT\research\fMRI\utils_for_all')
from common_utils import get_function_connectivity, fig_pcd_distrub, outliner_detect, keep_triangle_half
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.pyplot import MultipleLocator
import matplotlib
import copy
from collections import Counter
import math
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import KFold, train_test_split
from sklearn.cluster import KMeans
from scipy.stats import pearsonr
import seaborn as sns
# from direpack import sprm
# from pls_alex import PLSRegression, CCA
from sklearn.cross_decomposition import CCA,PLSRegression
from sklearn.metrics import r2_score
# import phik
from scipy import stats
from sklearn.decomposition import PCA,TruncatedSVD,NMF, SparsePCA, FactorAnalysis
from sklearn.manifold import MDS
from scipy.stats import spearmanr, pearsonr, ttest_ind
from scipy.stats import boxcox, yeojohnson
from scipy.stats import normaltest
import seaborn as sns
from rpy2.robjects.packages import importr
import rpy2.robjects as robjects
from rpy2.robjects import pandas2ri, numpy2ri
# from skbio.stats.distance import mantel
np.random.seed(9)
font = {'family' : 'Tahoma', 'weight' : 'bold', 'size' : 15}
# matplotlib.rc('font', **font)
def get_npi(data, name_list, no_NC=False):
npi_list = []
for name in name_list:
if pd.api.types.is_float_dtype(data[name]):
npi_sub_scale = data[name].fillna(0)
if no_NC:
npi_list.append(npi_sub_scale[data['DX']!='CN'].values)
else:
npi_list.append(npi_sub_scale.values)
else:
variable_names = set(data[name])
t = 0
for variable_name in variable_names:
data[name][data[name] == variable_name] = t
t = t + 1
data[name] = data[name].astype('float')
if no_NC:
npi_list.append(data[name][data['DX']!='CN'].values)
else:
npi_list.append(data[name].values)
return np.array(npi_list).T
def regress_out_confunder(data, confounder):
beta = np.dot(np.dot(np.linalg.inv(np.dot(confounder.T, confounder)), confounder.T), data)
feature_regout = np.zeros((data.shape[0], data.shape[1]))
feature_regout = data - np.dot(confounder, beta)
return feature_regout
def CPM_reduce_dimension(feature, target):
r_p_array = np.zeros((feature.shape[-1], 3))
for i in range(feature.shape[-1]):
r, p = pearsonr(feature[:,i], target)
if p < 0.05:
r_p_array[i,0] = r
r_p_array[i,1] = p
r_p_array[i,2] = 1
return r_p_array
def pca(data, components, corr_matrix):
# features = X_scaled.T
cov_matrix = corr_matrix
# cov_matrix = np.corrcoef(features)
values, vectors = np.linalg.eig(cov_matrix)
explained_variances = []
for i in range(len(values)):
explained_variances.append(values[i] / np.sum(values))
projected = data.dot(vectors.T[:,:components])
return explained_variances, vectors, projected
def MAD(data, percentile):
M = np.median(data, 0)
diff = abs(data - M)
M2 = np.median(diff, 0)
thre = np.percentile(M2, percentile)
mask = M2>=thre
return mask, diff
def Ttest(group1, group2):
t_p_array = np.zeros((group1.shape[-1],2))
for i in range(group1.shape[-1]):
t, p = ttest_ind(group1[:,i], group2[:,i])
if p <= 0.05:
t_p_array[i,0] = t
t_p_array[i,1] = p
return t_p_array[:,1] != 0
def get_net_net_connects(connections, net_info, net_nums = 7):
nets = list(net_info.keys())
new_conn = np.zeros((connections.shape[0], net_nums, connections.shape[-1]))
# new_conn2 = np.zeros((connections.shape[0], net_nums, connections.shape[-1]))
for i in range(len(nets)):
new_conn[:,i,:] = new_conn[:,i,:] + np.mean(connections[:,net_info[nets[i]][0][0]:net_info[nets[i]][0][1],:],1)
new_conn[:,i,:] = new_conn[:,i,:] + np.mean(connections[:,net_info[nets[i]][1][0]:net_info[nets[i]][1][1],:],1)
return new_conn
#########fc pcd preprocess
subjects = pd.read_csv(r'E:\PHD\learning\research\AD\data\OASIS3\pcd_interest.csv')['subjectID_Date']
mask = subjects.str.contains('d000', regex=False)
fc = sio.loadmat(r'E:\PHD\learning\research\AD\data\OASIS3\fc_NPI.mat')['interest_subjects_fc']
npi = pd.read_csv(r'E:\PHD\learning\research\AD\data\OASIS3\pcd_interest.csv').iloc[:,[8,10,12,14,16,18,20,22,24,26]]
subjects = subjects[mask]
fc = fc[mask]
npi = npi[mask]
npi = npi.fillna(0)
net_info_shf = {'VIS': ([0,9],[50,58]), 'SMN': ([9,15],[58,66]), 'DAN': ([15,23],[66,73]), 'VAN': ([23,30],[73,78]),
'LIM': ([30,33],[78,80]), 'FPC': ([33,37],[80,89]), 'DMN':([37,50],[89,100])}
fc_2 = get_net_net_connects(fc, net_info_shf)
ca_components = 4
folds = 10
fc_components_list = [30,40,50,60,70,80,90,100,130,150,180,200,210,220,230,240,250]
npi_components = 4
npi_reduce_method = 'pca'
fc_reduce_method2 = 'pca'
dimension_method = 'cca'
sparsity = True
normal_transf = False
subsample = False
subsample_ratio = 0/4
if sparsity:
if dimension_method == 'cca':
l1 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
elif dimension_method == 'pls':
l1 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
else:
if dimension_method == 'cca':
l1 = [0]
elif dimension_method == 'pls':
l1 = [0]
half_feature_ = keep_triangle_half(fc.shape[1] * (fc.shape[1]-1)//2, fc.shape[0], fc)
npi = npi.values
if subsample:
non_zero_id = np.where(np.sum(npi,1)!=0)[0]
zero_id = np.where(np.sum(npi,1)==0)[0]
idx = np.r_[zero_id[1:int(len(non_zero_id)*subsample_ratio)], non_zero_id]
np.random.shuffle(idx)
npi = npi[idx,:]
half_feature = half_feature_[idx,:]
else:
half_feature = half_feature_
subsample_ratio = 0
if normal_transf:
for i in range(npi.shape[-1]):
# npi[:,i] = np.sign(npi[:,i]-np.median(npi[:,i])) * np.power(abs(npi[:,i]-np.median(npi[:,i])), 1/3)
npi[:,i] = yeojohnson(npi[:,i])[0]
if fc_reduce_method2 == 'none':
fc_components_list = [4950]
# feature = regress_out_confunder(raw_feature, confounder)
for fc_components in fc_components_list:
for c_ in l1:
kf = KFold(n_splits=folds)
r_tr_list = np.zeros((folds,ca_components))
r_te_list = np.zeros((folds,ca_components))
j=0
trans_y_tr = []
trans_y_te = []
trans_x_tr = []
trans_x_te = []
weight_x = np.zeros((folds, fc_components, ca_components))
# weight_x = np.zeros((folds, int(4950*(100-fc_components)/100), ca_components))
weight_y = np.zeros((folds, npi_components, ca_components))
weight_npi = np.zeros((folds, npi.shape[-1], npi_components))
weight_fc = np.zeros((folds, half_feature_.shape[-1], fc_components))
te_save_path = r'E:\PHD\learning\research\AD_two_modal\result\new\baseline\roi_roi\python\{}\10_domains\subsample_zero{}_{}\l1{}\test_method_norm_{}_npi{}_method_{}_fmri{}_CAcomp{}_fold{}'.format(
dimension_method, subsample, subsample_ratio, c_, npi_reduce_method, npi_components,
fc_reduce_method2, fc_components, ca_components, folds)
print(te_save_path)
if c_ == 0.8 and fc_components == 50:
a = 0
if not os.path.exists(te_save_path):
os.makedirs(te_save_path)
else:
continue
# else:
# continue
idx_tr, idx_te = [], []
for train_index, test_index in kf.split(half_feature):
X_train = half_feature[train_index]
X_test = half_feature[test_index]
y_train = npi[train_index]
y_test = npi[test_index]
if fc_reduce_method2 == 't_test':
normal = half_feature_[zero_id[int(len(non_zero_id)*subsample_ratio):]]
mask = Ttest(X_train, normal)
X_train = X_train[:,mask]
X_test = X_test[:,mask]
elif fc_reduce_method2 == 'nmf_minmaxnorm':
fmri_pca = NMF(n_components=fc_components)
X_train = fmri_pca.fit_transform(abs(X_train))
X_test = fmri_pca.transform(abs(X_test))
elif fc_reduce_method2 == 'pca':
fmri_pca = PCA(n_components=fc_components)
X_train = fmri_pca.fit_transform(X_train)
var = fmri_pca.explained_variance_ratio_
X_test = fmri_pca.transform(X_test)
elif fc_reduce_method2 == 'mad':
percentile = fc_components
mask, med = MAD(X_train, percentile)
X_train = X_train[:,mask]
X_test = X_test[:,mask]
elif fc_reduce_method2 == 'sparse_pca':
fmri_pca = SparsePCA(n_components=fc_components, alpha=0.5)
X_train = fmri_pca.fit_transform(X_train)
var = fmri_pca.explained_variance_ratio_
X_test = fmri_pca.transform(X_test)
elif fc_reduce_method2 == 'fa':
fmri_pca = FactorAnalysis(n_components=fc_components)
X_train = fmri_pca.fit_transform(X_train)
X_test = fmri_pca.transform(X_test)
if npi_reduce_method == 'nmf':
npi_reduce_model = NMF(n_components=npi_components, random_state=42)
y_train = npi_reduce_model.fit_transform(y_train+1)
y_test = npi_reduce_model.transform(y_test+1)
elif npi_reduce_method == 'pca':
npi_reduce_model = PCA(n_components=npi_components)
y_train = npi_reduce_model.fit_transform(y_train)
var = npi_reduce_model.explained_variance_ratio_
y_test = npi_reduce_model.transform(y_test)
elif npi_reduce_method == 'mds':
npi_reduce_model = MDS(n_components=npi_components, metric = True)
y_train = npi_reduce_model.fit_transform(y_train)
y_test = npi_reduce_model.transform(y_test)
elif npi_reduce_method == 'fa':
npi_reduce_model = FactorAnalysis(n_components=npi_components)
y_train = npi_reduce_model.fit_transform(y_train)
# var = npi_reduce_model.explained_variance_ratio_
y_test = npi_reduce_model.transform(y_test)
elif npi_reduce_method == 'sparse_pca':
npi_reduce_model = SparsePCA(n_components=npi_components, alpha=0.5)
y_train = npi_reduce_model.fit_transform(y_train)
# var = fmri_pca.explained_variance_ratio_
y_test = npi_reduce_model.transform(y_test)
elif npi_reduce_method == 'none':
scaler = StandardScaler()
y_train = scaler.fit_transform(y_train)
y_test = scaler.transform(y_test)
# weight_fc[j] = fmri_pca.components_.T
# weight_npi[j] = npi_reduce_model.components_.T
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
scaler = StandardScaler()
y_train = scaler.fit_transform(y_train)
y_test = scaler.transform(y_test)
if l1[0]:
if dimension_method == 'cca':
spls = importr('PMA')
r = robjects.r
numpy2ri.activate()
out_cca_r = r['CCA'](X_train, y_train, typex="standard",typez="standard",K=ca_components,niter=1000,
penaltyx=c_, penaltyz=1)#larger c, less sparsity
out = dict(zip(out_cca_r.names, map(list,list(out_cca_r))))
w_x = np.reshape(np.array(out['u']), (ca_components, X_train.shape[-1])).T
w_y = np.reshape(np.array(out['v']), (ca_components, y_train.shape[-1])).T
X_train_ = np.dot(X_train, w_x)
y_train_ = np.dot(y_train, w_y)
X_test_ = np.dot(X_test, w_x)
y_test_ = np.dot(y_test, w_y)
x_load = np.dot(X_train_.T, X_train).T / np.diagonal(np.dot(X_train_.T, X_train_))
pctVar = sum(abs(x_load)*abs(x_load),1) / sum(sum(abs(X_train)*abs(X_train),1))
covmat = np.dot(np.dot(np.dot(w_x.T,X_train.T), y_train), w_y) #calculate covariance matrix
varE = np.diagonal(covmat) * np.diagonal(covmat) / sum(np.diagonal(covmat) * np.diagonal(covmat)) #calcualte covariance explained by each component
print(varE)
elif dimension_method == 'pls':
importr('mixOmics')
r = robjects.r
numpy2ri.activate()
c = c_*X_train.shape[-1]
c_list = r['c'](c, c, c)
out_pls_r = r['spls'](X_train, y_train, ncomp = ca_components, keepX = c_list)
# out_pls_r = r['pls'](X_train, y_train, ncomp = ca_components)
value = list(out_pls_r)
name = list(out_pls_r.names)
del name[14] #手动索引去掉一个null对象。。
del value[14]
del name[0] #去掉没必要的为map省时间
del value[0]
del name[0]
del value[0]
# del name[10]
# del value[10]
del name[-1]
del value[-1]
del name[-1]
del value[-1]
value = list(map(list,value))
variate = list(map(list,value[5]))
X_train_ = np.reshape(np.array(variate[0]), (ca_components, X_train.shape[0])).T
y_train_ = np.reshape(np.array(variate[1]), (ca_components, X_train.shape[0])).T
loading = list(map(list,value[6]))
w_x = np.reshape(np.array(loading[0]), (ca_components, X_train.shape[1])).T
w_y = np.reshape(np.array(loading[1]), (ca_components, y_train.shape[1])).T
X_test_ = np.dot(X_test, w_x)
y_test_ = np.dot(y_test, w_y)
x_load = np.dot(X_train_.T, X_train).T / np.diagonal(np.dot(X_train_.T, X_train_))
pctVar = sum(abs(x_load)*abs(x_load),1) / sum(sum(abs(X_train)*abs(X_train),1))
# pctVar = sum(abs(w_x)*abs(w_x),1) / sum(sum(abs(X_train_)*abs(X_train_),1))
# sum(abs(Yloadings).^2,1) ./ sum(sum(abs(Y0).^2,1))]
variance = list(map(list,value[-1]))
covmat = np.dot(np.dot(np.dot(w_x.T,X_train.T), y_train), w_y) #calculate covariance matrix
varE = np.diagonal(covmat) * np.diagonal(covmat) / sum(np.diagonal(covmat) * np.diagonal(covmat)) #calcualte covariance explained by each component
print(varE)
else:
if dimension_method == 'cca':
pls = CCA(n_components=ca_components)
X_train_, y_train_ = pls.fit_transform(X_train, y_train)
X_test_, y_test_ = pls.transform(X_test, y_test)
# pls.fit(X_train, y_train, cu = 0, cv=0)
elif dimension_method == 'pls':
pls = PLSRegression(n_components=ca_components)
X_train_, y_train_ = pls.fit_transform(X_train, y_train)
X_test_, y_test_ = pls.transform(X_test, y_test)
w_x = pls.x_weights_
w_y = pls.y_weights_
trans_y_tr.append(y_train_)
trans_y_te.append(y_test_)
trans_x_tr.append(X_train_)
trans_x_te.append(X_test_)
idx_tr.append(train_index)
idx_te.append(test_index)
# weight_x[j,:w_x.shape[0]] = w_x
weight_x[j] = w_x
weight_y[j] = w_y
for i in range(ca_components):
r_train = pearsonr(X_train_[:,i], y_train_[:,i])
r_test = pearsonr(X_test_[:,i], y_test_[:,i])
r_tr_list[j,i] = r_train[0]
r_te_list[j,i] = r_test[0]
j = j+1
print(trans_x_te[0].shape)
print(trans_y_te[0].shape)
x_te_final = np.concatenate((trans_x_te[0], trans_x_te[1], trans_x_te[2], trans_x_te[3], trans_x_te[4],
trans_x_te[5], trans_x_te[6], trans_x_te[7], trans_x_te[8], trans_x_te[9]),0)
x_tr_final = np.concatenate((trans_x_tr[0], trans_x_tr[1], trans_x_tr[2], trans_x_tr[3], trans_x_tr[4],
trans_x_tr[5], trans_x_tr[6], trans_x_tr[7], trans_x_tr[8], trans_x_tr[9]),0)
y_te_final = np.concatenate((trans_y_te[0], trans_y_te[1], trans_y_te[2], trans_y_te[3], trans_y_te[4],
trans_y_te[5], trans_y_te[6], trans_y_te[7], trans_y_te[8], trans_y_te[9]),0)
y_tr_final = np.concatenate((trans_y_tr[0], trans_y_tr[1], trans_y_tr[2], trans_y_tr[3], trans_y_tr[4],
trans_y_tr[5], trans_y_tr[6], trans_y_tr[7], trans_y_tr[8], trans_y_tr[9]),0)
r_total_tr = list(pearsonr(x_tr_final[:,i], y_tr_final[:,i])[0] for i in range(ca_components))
r_total_te = list(pearsonr(x_te_final[:,i], y_te_final[:,i])[0] for i in range(ca_components))
print(varE)
print(r_total_tr)
r_save_file = os.path.join(te_save_path, 'r.txt')
for n, r in enumerate(r_total_tr):
f = open(r_save_file,'a')
f.write('train comp {} r: {}\n'.format(n,r))
f.close()
for n, r in enumerate(r_total_te):
f = open(r_save_file,'a')
f.write('test comp {} r: {}\n'.format(n,r))
f.close()
print(r_total_te)
sio.savemat(os.path.join(te_save_path, 'output.mat'), {'trans_x_te': trans_x_te, 'trans_x_tr': trans_x_tr,
'trans_y_te': trans_y_te, 'trans_y_tr': trans_y_tr,
'pls_x_weight': weight_x, 'pls_y_weight': weight_y,
'variance': varE,
'weight_npi': weight_npi,
# 'weight_fc': weight_fc,
'idx_tr': idx_tr, 'idx_te': idx_te})
plt.figure(figsize =(15,15))
axes = plt.gca()
axes.boxplot(np.array(r_tr_list),patch_artist=True) #描点上色
plt.savefig(os.path.join(te_save_path, 'train_perfomance.png'))
plt.show()
plt.figure(figsize =(15,15))
axes = plt.gca()
axes.boxplot(np.array(r_te_list),patch_artist=True) #描点上色
# plt.text(2.999, 0.1, 'comp1: {:.3}\ncomp2: {:.3}\ncomp3: {:.3}\ncomp4: {:.3}'.format(
# r_total_te[0], r_total_te[1], r_total_te[2], r_total_te[3]))
plt.text(2.999, 0.1, 'comp1: {:.3}\ncomp2: {:.3}\ncomp3: {:.3}'.format(
r_total_te[0], r_total_te[1], r_total_te[2]))
plt.savefig(os.path.join(te_save_path, 'test_perfomance.png'))
plt.show()
plt.figure(figsize =(10,10))
sns.kdeplot(npi[:,0], shade=True)
sns.rugplot(npi[:,0])
name = 'npi_component1'
plt.title(name)
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(10,10))
sns.kdeplot(npi[:,1], shade=True)
sns.rugplot(npi[:,1])
name = 'npi_component2'
plt.title(name)
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
if npi_reduce_method != 'mds' and npi_reduce_method != 'none':
plt.figure(figsize =(15,15))
ax = plt.gca()
plt.imshow(npi_reduce_model.components_, cmap = 'RdBu')
plt.colorbar()
name = 'npi_{}_loadings'.format(npi_reduce_method)
plt.title(name)
plt.setp(ax.get_xticklabels(), rotation=90, ha="right",
rotation_mode="anchor")
plt.xticks(np.arange(10), ['Delusions', 'Hallucinations', 'Agitation', 'Depression', 'Anxiety', 'Euphoria',
'Apathy', 'Disinhibition', 'Irritability', 'Aberrant motor\nbehavior'])
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=X_train[:200,:].min()-0.1, vmax = X_train[:200,:].max(), vcenter=0)
plt.imshow(X_train[:200,:], cmap = 'RdBu', norm=norm)
plt.colorbar()
name = 'fc_after{}mapping_first200subjects'.format(npi_reduce_method)
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(25,15))
ax = plt.gca()
plt.imshow(w_x[:100,:], cmap = 'RdBu')
plt.colorbar()
name = 'cca_xloadings'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
try:
norm = mcolors.TwoSlopeNorm(vmin=w_y.min(), vmax = w_y.max(), vcenter=0)
plt.imshow(w_y, cmap = 'RdBu', norm=norm)
except ValueError:
plt.imshow(w_y, cmap = 'RdBu')
plt.colorbar()
name = 'cca_yloadings'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=npi.min()-0.1, vmax = npi.max(), vcenter=0)
plt.imshow(npi, cmap = 'RdBu', norm=norm)
plt.colorbar()
name = 'npi_after{}mapping'.format(npi_reduce_method)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.title(name)
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=npi[:200].min()-0.1, vmax = npi[:200].max(), vcenter=0)
plt.imshow(npi[:200], cmap = 'RdBu', norm=norm)
plt.colorbar()
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
name = 'npi_after{}mapping_first200'.format(npi_reduce_method)
plt.title(name)
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=X_train_[:100,:].min(), vmax = X_train_[:100,:].max(), vcenter=0)
plt.imshow(X_train_[:100,:], cmap = 'RdBu', norm=norm)
plt.colorbar()
name = 'cca_X_train_transform_first100'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=y_train_[:100,:].min(), vmax = y_train_[:100,:].max(), vcenter=0)
plt.imshow(y_train_[:100,:], cmap = 'RdBu', norm=norm)
plt.colorbar()
name = 'cca_y_train_transform_first100'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
norm = mcolors.TwoSlopeNorm(vmin=X_test_.min(), vmax = X_test_.max(), vcenter=0)
plt.imshow(X_test_, cmap = 'RdBu', norm=norm)
plt.colorbar()
name = 'cca_x_test_transform'
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.title(name)
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
plt.imshow(y_test_, cmap = 'RdBu')
plt.colorbar()
name = 'cca_y_test_transform'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
plt.scatter(X_train_[:,0], y_train_[:,0])
name = 'tr_cca_comp1_xy'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
plt.scatter(x_te_final[:,0], y_te_final[:,0])
name = 'te_cca_comp1_xy'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
plt.scatter(X_train_[:,1], y_train_[:,1])
name = 'tr_cca_comp2_xy'
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.figure(figsize =(15,15))
ax = plt.gca()
name = 'te_cca_comp2_xy'
plt.scatter(x_te_final[:,1], y_te_final[:,1])
plt.title(name)
ax.set_aspect(1.0/ax.get_data_ratio(), adjustable='box')
plt.savefig(os.path.join(te_save_path, '{}.png'.format(name)))
plt.close('all')