forked from CliMA/Oceananigans.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_steppers.jl
311 lines (251 loc) · 13.3 KB
/
time_steppers.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
@hascuda using GPUifyLoops, CUDAnative, CuArrays
using Oceananigans.Operators
function time_step!(model::Model; Nt, Δt)
if model.metadata.arch == :cpu
time_step_kernel_cpu!(model, Nt, Δt)
elseif model.metadata.arch == :gpu
time_step_kernel_gpu!(model, Nt, Δt)
end
end
function time_step_kernel_cpu!(model::Model, Nt, Δt)
metadata = model.metadata
cfg = model.configuration
bc = model.boundary_conditions
g = model.grid
c = model.constants
eos = model.eos
ssp = model.ssp
U = model.velocities
tr = model.tracers
pr = model.pressures
G = model.G
Gp = model.Gp
F = model.forcings
stmp = model.stepper_tmp
clock = model.clock
model_start_time = clock.time
model_end_time = model_start_time + Nt*Δt
if clock.time_step == 0
for output_writer in model.output_writers
write_output(model, output_writer)
end
for diagnostic in model.diagnostics
run_diagnostic(model, diagnostic)
end
end
Nx, Ny, Nz = g.Nx, g.Ny, g.Nz
Lx, Ly, Lz = g.Lx, g.Ly, g.Lz
Δx, Δy, Δz = g.Δx, g.Δy, g.Δz
# Field references.
δρ = stmp.fC1
RHS = stmp.fCC1
ϕ = stmp.fCC2
# Constants.
gΔz = c.g * g.Δz
χ = 0.1 # Adams-Bashforth (AB2) parameter.
fCor = c.f
for n in 1:Nt
t1 = time_ns(); # Timing the time stepping loop.
update_buoyancy!(Val(:CPU), gΔz, Nx, Ny, Nz, tr.ρ.data, δρ.data, tr.T.data, pr.pHY′.data, eos.ρ₀, eos.βT, eos.T₀)
update_source_terms!(Val(:CPU), fCor, χ, eos.ρ₀, cfg.κh, cfg.κv, cfg.𝜈h, cfg.𝜈v, Nx, Ny, Nz, Δx, Δy, Δz,
U.u.data, U.v.data, U.w.data, tr.T.data, tr.S.data, pr.pHY′.data,
G.Gu.data, G.Gv.data, G.Gw.data, G.GT.data, G.GS.data,
Gp.Gu.data, Gp.Gv.data, Gp.Gw.data, Gp.GT.data, Gp.GS.data, model.forcing)
calculate_source_term_divergence_cpu!(Val(:CPU), Nx, Ny, Nz, Δx, Δy, Δz, G.Gu.data, G.Gv.data, G.Gw.data, RHS.data)
solve_poisson_3d_ppn_planned!(ssp, g, RHS, ϕ)
@. pr.pNHS.data = real(ϕ.data)
update_velocities_and_tracers!(Val(:CPU), Nx, Ny, Nz, Δx, Δy, Δz, Δt,
U.u.data, U.v.data, U.w.data, tr.T.data, tr.S.data, pr.pNHS.data,
G.Gu.data, G.Gv.data, G.Gw.data, G.GT.data, G.GS.data,
Gp.Gu.data, Gp.Gv.data, Gp.Gw.data, Gp.GT.data, Gp.GS.data)
clock.time += Δt
clock.time_step += 1
print("\rmodel.clock.time = $(clock.time) / $model_end_time ")
for output_writer in model.output_writers
if clock.time_step % output_writer.output_frequency == 0
write_output(model, output_writer)
end
end
for diagnostic in model.diagnostics
if clock.time_step % diagnostic.diagnostic_frequency == 0
run_diagnostic(model, diagnostic)
end
end
t2 = time_ns();
println(prettytime(t2 - t1))
end
end
function time_step_kernel_gpu!(model::Model, Nt, Δt)
metadata = model.metadata
cfg = model.configuration
bc = model.boundary_conditions
g = model.grid
c = model.constants
eos = model.eos
ssp = model.ssp
U = model.velocities
tr = model.tracers
pr = model.pressures
G = model.G
Gp = model.Gp
F = model.forcings
stmp = model.stepper_tmp
clock = model.clock
model_start_time = clock.time
model_end_time = model_start_time + Nt*Δt
if clock.time_step == 0
for output_writer in model.output_writers
write_output(model, output_writer)
end
for diagnostic in model.diagnostics
run_diagnostic(model, diagnostic)
end
end
Nx, Ny, Nz = g.Nx, g.Ny, g.Nz
Lx, Ly, Lz = g.Lx, g.Ly, g.Lz
Δx, Δy, Δz = g.Δx, g.Δy, g.Δz
# Field references.
δρ = stmp.fC1
RHS = stmp.fCC1
ϕ = stmp.fCC2
# Constants.
gΔz = c.g * g.Δz
χ = 0.1 # Adams-Bashforth (AB2) parameter.
fCor = c.f
Tx, Ty = 16, 16 # Threads per block
Bx, By, Bz = Int(Nx/Tx), Int(Ny/Ty), Nz # Blocks in grid.
println("Threads per block: ($Tx, $Ty)")
println("Blocks in grid: ($Bx, $By, $Bz)")
for n in 1:Nt
t1 = time_ns(); # Timing the time stepping loop.
@hascuda @cuda threads=(Tx, Ty) blocks=(Bx, By, Bz) update_buoyancy!(Val(:GPU), gΔz, Nx, Ny, Nz, tr.ρ.data, δρ.data, tr.T.data, pr.pHY′.data, eos.ρ₀, eos.βT, eos.T₀)
@hascuda @cuda threads=(Tx, Ty) blocks=(Bx, By, Bz) update_source_terms!(Val(:GPU), fCor, χ, eos.ρ₀, cfg.κh, cfg.κv, cfg.𝜈h, cfg.𝜈v, Nx, Ny, Nz, Δx, Δy, Δz,
U.u.data, U.v.data, U.w.data, tr.T.data, tr.S.data, pr.pHY′.data,
G.Gu.data, G.Gv.data, G.Gw.data, G.GT.data, G.GS.data,
Gp.Gu.data, Gp.Gv.data, Gp.Gw.data, Gp.GT.data, Gp.GS.data, F.FT.data)
@hascuda @cuda threads=(Tx, Ty) blocks=(Bx, By, Bz) calculate_source_term_divergence_gpu!(Val(:GPU), Nx, Ny, Nz, Δx, Δy, Δz, G.Gu.data, G.Gv.data, G.Gw.data, RHS.data)
solve_poisson_3d_ppn_gpu_planned!(Tx, Ty, Bx, By, Bz, model.ssp, g, RHS, ϕ)
@hascuda @cuda threads=(Tx, Ty) blocks=(Bx, By, Bz) idct_permute!(Val(:GPU), Nx, Ny, Nz, ϕ.data, pr.pNHS.data)
@hascuda @cuda threads=(Tx, Ty) blocks=(Bx, By, Bz) update_velocities_and_tracers!(Val(:GPU), Nx, Ny, Nz, Δx, Δy, Δz, Δt,
U.u.data, U.v.data, U.w.data, tr.T.data, tr.S.data, pr.pNHS.data,
G.Gu.data, G.Gv.data, G.Gw.data, G.GT.data, G.GS.data,
Gp.Gu.data, Gp.Gv.data, Gp.Gw.data, Gp.GT.data, Gp.GS.data)
clock.time += Δt
clock.time_step += 1
print("\rmodel.clock.time = $(clock.time) / $model_end_time ")
for output_writer in model.output_writers
if clock.time_step % output_writer.output_frequency == 0
write_output(model, output_writer)
end
end
for diagnostic in model.diagnostics
if clock.time_step % diagnostic.diagnostic_frequency == 0
run_diagnostic(model, diagnostic)
end
end
t2 = time_ns();
println(prettytime(t2 - t1))
end
end
@inline δρ(eos::LinearEquationOfState, T::CellField, i, j, k) = - eos.ρ₀ * eos.βT * (T.data[i, j, k] - eos.T₀)
@inline δρ(ρ₀, βT, T₀, T, i, j, k) = @inbounds -ρ₀ * βT * (T[i, j, k] - T₀)
function update_buoyancy!(::Val{Dev}, gΔz, Nx, Ny, Nz, ρ, δρ, T, pHY′, ρ₀, βT, T₀) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
@inbounds δρ[i, j, k] = -ρ₀*βT * (T[i, j, k] - T₀)
@inbounds ρ[i, j, k] = ρ₀ + δρ[i, j, k]
∫δρ = (-ρ₀*βT*(T[i, j, 1]-T₀))
for k′ in 2:k
∫δρ += ((-ρ₀*βT*(T[i, j, k′-1]-T₀)) + (-ρ₀*βT*(T[i, j, k′]-T₀)))
end
@inbounds pHY′[i, j, k] = 0.5 * gΔz * ∫δρ
end
end
end
@synchronize
end
function update_source_terms!(::Val{Dev}, fCor, χ, ρ₀, κh, κv, 𝜈h, 𝜈v, Nx, Ny, Nz, Δx, Δy, Δz, u, v, w, T, S, pHY′, Gu, Gv, Gw, GT, GS, Gpu, Gpv, Gpw, GpT, GpS, F) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
@inbounds Gpu[i, j, k] = Gu[i, j, k]
@inbounds Gpv[i, j, k] = Gv[i, j, k]
@inbounds Gpw[i, j, k] = Gw[i, j, k]
@inbounds GpT[i, j, k] = GT[i, j, k]
@inbounds GpS[i, j, k] = GS[i, j, k]
@inbounds Gu[i, j, k] = -u∇u(u, v, w, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + fCor*avg_xy(v, Nx, Ny, i, j, k) - δx_c2f(pHY′, Nx, i, j, k) / (Δx * ρ₀) + 𝜈∇²u(u, 𝜈h, 𝜈v, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + F.u(u, v, w, T, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
@inbounds Gv[i, j, k] = -u∇v(u, v, w, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) - fCor*avg_xy(u, Nx, Ny, i, j, k) - δy_c2f(pHY′, Ny, i, j, k) / (Δy * ρ₀) + 𝜈∇²v(v, 𝜈h, 𝜈v, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + F.v(u, v, w, T, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
@inbounds Gw[i, j, k] = -u∇w(u, v, w, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + 𝜈∇²w(w, 𝜈h, 𝜈v, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + F.w(u, v, w, T, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
@inbounds GT[i, j, k] = -div_flux(u, v, w, T, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + κ∇²(T, κh, κv, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + F.T(u, v, w, T, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
@inbounds GS[i, j, k] = -div_flux(u, v, w, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + κ∇²(S, κh, κv, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k) + F.S(u, v, w, T, S, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
@inbounds Gu[i, j, k] = (1.5 + χ)*Gu[i, j, k] - (0.5 + χ)*Gpu[i, j, k]
@inbounds Gv[i, j, k] = (1.5 + χ)*Gv[i, j, k] - (0.5 + χ)*Gpv[i, j, k]
@inbounds Gw[i, j, k] = (1.5 + χ)*Gw[i, j, k] - (0.5 + χ)*Gpw[i, j, k]
@inbounds GT[i, j, k] = (1.5 + χ)*GT[i, j, k] - (0.5 + χ)*GpT[i, j, k]
@inbounds GS[i, j, k] = (1.5 + χ)*GS[i, j, k] - (0.5 + χ)*GpS[i, j, k]
end
end
end
@synchronize
end
function calculate_source_term_divergence_cpu!(::Val{Dev}, Nx, Ny, Nz, Δx, Δy, Δz, Gu, Gv, Gw, RHS) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
# Calculate divergence of the RHS source terms (Gu, Gv, Gw).
@inbounds RHS[i, j, k] = div_f2c(Gu, Gv, Gw, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
end
end
end
@synchronize
end
function calculate_source_term_divergence_gpu!(::Val{Dev}, Nx, Ny, Nz, Δx, Δy, Δz, Gu, Gv, Gw, RHS) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
# Calculate divergence of the RHS source terms (Gu, Gv, Gw) and applying a permutation which is the first step in the DCT.
if CUDAnative.ffs(k) == 1 # isodd(k)
@inbounds RHS[i, j, convert(UInt32, CUDAnative.floor(k/2) + 1)] = div_f2c(Gu, Gv, Gw, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
else
@inbounds RHS[i, j, convert(UInt32, Nz - CUDAnative.floor((k-1)/2))] = div_f2c(Gu, Gv, Gw, Nx, Ny, Nz, Δx, Δy, Δz, i, j, k)
end
end
end
end
@synchronize
end
function idct_permute!(::Val{Dev}, Nx, Ny, Nz, ϕ, pNHS) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
if k <= Nz/2
@inbounds pNHS[i, j, 2k-1] = real(ϕ[i, j, k])
else
@inbounds pNHS[i, j, 2(Nz-k+1)] = real(ϕ[i, j, k])
end
end
end
end
@synchronize
end
function update_velocities_and_tracers!(::Val{Dev}, Nx, Ny, Nz, Δx, Δy, Δz, Δt, u, v, w, T, S, pNHS, Gu, Gv, Gw, GT, GS, Gpu, Gpv, Gpw, GpT, GpS) where Dev
@setup Dev
@loop for k in (1:Nz; blockIdx().z)
@loop for j in (1:Ny; (blockIdx().y - 1) * blockDim().y + threadIdx().y)
@loop for i in (1:Nx; (blockIdx().x - 1) * blockDim().x + threadIdx().x)
@inbounds u[i, j, k] = u[i, j, k] + (Gu[i, j, k] - (δx_c2f(pNHS, Nx, i, j, k) / Δx)) * Δt
@inbounds v[i, j, k] = v[i, j, k] + (Gv[i, j, k] - (δy_c2f(pNHS, Ny, i, j, k) / Δy)) * Δt
@inbounds w[i, j, k] = w[i, j, k] + (Gw[i, j, k] - (δz_c2f(pNHS, Nz, i, j, k) / Δz)) * Δt
@inbounds T[i, j, k] = T[i, j, k] + (GT[i, j, k] * Δt)
@inbounds S[i, j, k] = S[i, j, k] + (GS[i, j, k] * Δt)
end
end
end
@synchronize
end