-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_trainer.py
218 lines (174 loc) · 7.64 KB
/
gan_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from typing import Dict, Optional, Tuple, Union, List
import logging
from model_utils import validate_model_outputs
from metrics import get_discriminator_loss, get_generator_loss
from visualization import plot_training_progress
from gan_settings import LOG_INTERVAL
class GANTrainer:
def __init__(
self,
generator: nn.Module,
discriminator: nn.Module,
train_loader: DataLoader,
val_loader: Optional[DataLoader] = None,
learning_rate: float = 0.0002,
disc_learning_rate: Optional[float] = None,
beta1: float = 0.5,
beta2: float = 0.999,
n_critic: int = 5,
lambda_gp: float = 10.0
) -> None:
self.generator = generator
self.discriminator = discriminator
self.train_loader = train_loader
self.val_loader = val_loader
# Use disc_learning_rate if provided, otherwise use learning_rate for both
d_lr = disc_learning_rate if disc_learning_rate is not None else learning_rate
self.g_optimizer = torch.optim.Adam(
generator.parameters(), lr=learning_rate, betas=(beta1, beta2)
)
self.d_optimizer = torch.optim.Adam(
discriminator.parameters(), lr=d_lr, betas=(beta1, beta2)
)
self.n_critic = n_critic
self.lambda_gp = lambda_gp
self.device = next(generator.parameters()).device
self.logger = logging.getLogger(__name__)
def _train_discriminator(
self,
real_samples: torch.Tensor,
conditions: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, float]]:
self.d_optimizer.zero_grad()
batch_size = real_samples.size(0)
# Ensure inputs are properly shaped
if real_samples.dim() > 2:
real_samples = real_samples.view(batch_size, -1)
if conditions.dim() > 2:
conditions = conditions.view(batch_size, -1)
# Generate fake samples
with torch.no_grad():
z = torch.randn(batch_size, self.generator.z_dim, device=self.device)
fake_samples = self.generator(z, conditions)
# Ensure fake samples are properly shaped
if fake_samples.dim() > 2:
fake_samples = fake_samples.view(batch_size, -1)
# Get discriminator outputs
real_validity = self.discriminator(real_samples, conditions)
fake_validity = self.discriminator(fake_samples.detach(), conditions)
# Calculate loss
d_loss = get_discriminator_loss(real_validity, fake_validity, "wasserstein", self.device)
# Gradient penalty
alpha = torch.rand(batch_size, 1, device=self.device)
alpha = alpha.expand_as(real_samples)
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples.detach())).requires_grad_(True)
d_interpolates = self.discriminator(interpolates, conditions)
gradients = torch.autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(d_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.lambda_gp
# Add gradient penalty to discriminator loss
d_loss += gradient_penalty
d_loss.backward()
self.d_optimizer.step()
metrics = {
"d_loss": d_loss.item(),
"d_real": real_validity.mean().item(),
"d_fake": fake_validity.mean().item(),
"gradient_penalty": gradient_penalty.item()
}
return d_loss, metrics
def _train_generator(
self,
conditions: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, float]]:
self.g_optimizer.zero_grad()
batch_size = conditions.size(0)
# Ensure inputs are properly shaped
if conditions.dim() > 2:
conditions = conditions.view(batch_size, -1)
# Generate fake samples
z = torch.randn(batch_size, self.generator.z_dim, device=self.device)
fake_samples = self.generator(z, conditions)
# Ensure fake samples are properly shaped
if fake_samples.dim() > 2:
fake_samples = fake_samples.view(batch_size, -1)
# Get discriminator outputs
fake_validity = self.discriminator(fake_samples, conditions)
# Calculate generator loss
g_loss = -fake_validity.mean()
g_loss.backward()
self.g_optimizer.step()
metrics = {
"g_loss": g_loss.item(),
"g_fake": fake_validity.mean().item()
}
return g_loss, metrics
def train_epoch(
self,
epoch: int,
log_interval: int = LOG_INTERVAL
) -> Dict[str, List[float]]:
self.generator.train()
self.discriminator.train()
d_losses = []
g_losses = []
d_real_vals = []
d_fake_vals = []
num_batches = 0
for batch_idx, batch_data in enumerate(self.train_loader):
# Unpack batch data - real_samples and conditions
real_samples, conditions = batch_data
batch_size = real_samples.size(0)
# Move data to device
real_samples = real_samples.to(self.device)
conditions = conditions.to(self.device)
# Train discriminator
d_loss, d_metrics = self._train_discriminator(real_samples, conditions)
d_losses.append(d_metrics['d_loss'])
d_real_vals.append(d_metrics['d_real'])
d_fake_vals.append(d_metrics['d_fake'])
# Train generator
if batch_idx % self.n_critic == 0:
g_loss, g_metrics = self._train_generator(conditions)
g_losses.append(g_metrics['g_loss'])
num_batches += 1
if batch_idx % log_interval == 0:
avg_d_loss = sum(d_losses[-log_interval:]) / min(log_interval, len(d_losses))
avg_g_loss = sum(g_losses[-log_interval:]) / min(log_interval, len(g_losses))
avg_d_real = sum(d_real_vals[-log_interval:]) / min(log_interval, len(d_real_vals))
avg_d_fake = sum(d_fake_vals[-log_interval:]) / min(log_interval, len(d_fake_vals))
self.logger.info(
f"[Epoch {epoch}][{batch_idx}/{len(self.train_loader)}] "
f"D_loss: {avg_d_loss:.4f} "
f"G_loss: {avg_g_loss:.4f} "
f"D(x): {avg_d_real:.4f} "
f"D(G(z)): {avg_d_fake:.4f}"
)
# Log epoch summary
avg_d_loss = sum(d_losses) / len(d_losses)
avg_g_loss = sum(g_losses) / len(g_losses)
avg_d_real = sum(d_real_vals) / len(d_real_vals)
avg_d_fake = sum(d_fake_vals) / len(d_fake_vals)
self.logger.info(
f"\nEpoch {epoch} Summary:\n"
f"Average D_loss: {avg_d_loss:.4f}\n"
f"Average G_loss: {avg_g_loss:.4f}\n"
f"Average D(x): {avg_d_real:.4f}\n"
f"Average D(G(z)): {avg_d_fake:.4f}\n"
)
return {
"d_losses": d_losses,
"g_losses": g_losses,
"d_real_vals": d_real_vals,
"d_fake_vals": d_fake_vals
}