-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
152 lines (107 loc) · 5.44 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import torch
import wandb
import random
import os
from torch.autograd import Variable
from collections import namedtuple
import torchvision.utils as vutils
from torch.utils.data import DataLoader
from torch import optim
from tqdm import tqdm
import time
import imageio
from save_model import load_model
from dpipe.torch.functional import weighted_cross_entropy_with_logits
from utils.utils import log_images
from IPython import embed
from models import UNet2D
from models import replace_layers
from evaluate import dice_score
from save_model import save_model
from evaluate import evaluate_preds_surface_dice, sdice
from datetime import datetime
from utils.logger import save_config
from utils import logger
def test(dataset, adapt, config, suffix, wandb_mode, device=torch.device("cuda:0"), initial_lr=0.001):
folder_time = datetime.now().strftime("%Y-%m-%d_%I-%M-%S_%p")
n_channels_out = config.n_channels_out
CE_loss = torch.nn.CrossEntropyLoss()
save_config(config, suffix,folder_time)
wandb_run = wandb.init( project='domain_adaptation', entity='sidra', name = config['model_net_name'] + "_" + suffix +"_"+ folder_time, mode = wandb_mode)
model = UNet2D(n_chans_in=1, n_chans_out=n_channels_out, n_filters_init=16)
# Depending on mode, inject ConvLoRA to respective modules
if adapt == "lora_only":
print(f"adapt: {adapt}")
model = replace_layers(model, ["init_path"])
print("layers injected")
model.load_state_dict(torch.load(config.lora_checkpoint.replace("dc_model.pth", "lora_only.pth")), strict = False)
model.load_state_dict(torch.load(config.base_model_checkpoint ), strict = False)
elif adapt == "lora:down1":
print(f"adapt: {adapt}")
model = replace_layers(model, ["init_path", "down1"])
print("layers injected")
model.load_state_dict(torch.load(config.lora_checkpoint.replace("dc_model.pth", "lora_only.pth")), strict = False)
model.load_state_dict(torch.load(config.base_model_checkpoint ), strict = False)
elif adapt == "lora:down2":
print(f"adapt: {adapt}")
model = replace_layers(model, ["init_path", "down1", "down2"]) # layers to in LoRA matrices
print("layers injected")
model.load_state_dict(torch.load(config.lora_checkpoint.replace("dc_model.pth", "lora_only.pth")), strict = False)
model.load_state_dict(torch.load(config.base_model_checkpoint ), strict = False)
elif adapt == "lora:down3":
print(f"adapt: {adapt}")
model = replace_layers(model, ["init_path", "down1", "down2", "down3"]) # layers to in LoRA matrices
print("layers injected")
model.load_state_dict(torch.load(config.lora_checkpoint.replace("dc_model.pth", "lora_only.pth")), strict = False)
model.load_state_dict(torch.load(config.base_model_checkpoint ), strict = False)
elif adapt == "constrained_lora":
print(f"adapt: {adapt}")
model = replace_layers(model, ["init_path"]) # layers to in LoRA matrices
lora_model = torch.load(config.lora_checkpoint)
filtered_state_dict = {k: v for k, v in lora_model.items() if "init_path" in k}
model.load_state_dict(torch.load(config.base_model_checkpoint), strict = False)
model.load_state_dict(filtered_state_dict, strict = False)
elif adapt == "ada_bn":
lora_model = torch.load(config.lora_checkpoint)
filtered_state_dict = {k: v for k, v in lora_model.items() if "running_mean" in k or "running_var" in k}
model.load_state_dict(torch.load(config.base_model_checkpoint), strict = False)
model.load_state_dict(filtered_state_dict, strict = False)
elif adapt == "full":
model.load_state_dict(torch.load(config.lora_checkpoint), strict = False)
else:
raise ValueError("Invalid Value ")
if torch.cuda.is_available():
model = model.cuda()
model.eval()
print('----------------------------------------------------------------------')
print(' Testing Started...')
print('----------------------------------------------------------------------')
with torch.no_grad():
total_loss = 0.0
avg_dice = []
for idx in range(len(dataset)):
# Get the ith image, label, and voxel
input_samples, gt_samples, voxel = dataset[idx]
print(input_samples.shape)
slices = []
for slice_id, img_slice in enumerate(input_samples): # looping over single img
img_slice = img_slice.unsqueeze(0)
img_slice = img_slice.to(device)
preds = model(img_slice)
slices.append(preds.squeeze().detach().cpu())
segmented_volume = torch.stack(slices, axis=0)
slices.clear()
loss = weighted_cross_entropy_with_logits(segmented_volume.unsqueeze(1), gt_samples)
test_dice = sdice( torch.sigmoid(segmented_volume).numpy() >0.5,
gt_samples.squeeze().numpy()>0,
voxel[idx])
total_loss += loss.item()
avg_dice.append(test_dice)
# logging
mask = torch.zeros(size=segmented_volume.shape)
mask[torch.sigmoid(segmented_volume) > 0.5] = 1
log_images(input_samples, mask.unsqueeze(1), gt_samples, 100 , "Test", idx)
total_loss_avg = total_loss / len(dataset)
final_avg_dice = np.mean(avg_dice)
return final_avg_dice, total_loss_avg