-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.lua
329 lines (270 loc) · 10.5 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
--
-- main.lua
-- hard-attention
--
-- Created by Andrey Kolishchak on 09/27/15.
--
require 'nn'
require 'optim'
require 'nngraph'
require 'optim'
require 'gnuplot'
require 'image'
require 'data.dataset'
require 'glimpse'
require 'MultinomialAction'
require 'demo'
local model_utils = require 'util.model_utils'
local LSTM = require 'LSTM'
local action_policy = require 'action_policy'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Hard Attention')
cmd:text()
cmd:text('Options')
cmd:option('-glimpse_width', 4, 'width of glimpse')
cmd:option('-glimpse_step', 2, 'width of glimpse')
cmd:option('-rnn_size', 512, 'size of RNN internal state')
cmd:option('-seq_length', 20, 'number of timesteps to unroll for')
cmd:option('-num_layers', 1, 'number of layers in the LSTM')
cmd:option('-dropout', 0.7, 'dropout')
cmd:option('-learning_rate', 1e-3, 'learning rate')
cmd:option('-batch_size', 100, 'number of sequences to train on in parallel')
cmd:option('-max_epoch', 10, 'number of full passes through the training data')
cmd:option('-gpu',2,'0 - cpu, 1 - cunn, 2 - cudnn')
cmd:option('-output_path', 'images', 'path for output images')
cmd:option('-mode', 'base', 'base - baseline, demo - demonstration rewards')
opt = cmd:parse(arg)
opt.glimpse_size = opt.glimpse_width * opt.glimpse_width
if opt.gpu > 0 then
require 'cunn'
if opt.gpu == 2 then
require 'cudnn'
end
end
--
-- load data
--
print("loading data...")
local dataset = load_mnist(opt)
dataset.train_x_glimpse = init_glimpse_data(dataset.train_x, opt.glimpse_width, opt.glimpse_step)
dataset.test_x_glimpse = init_glimpse_data(dataset.test_x, opt.glimpse_width, opt.glimpse_step)
opt.image_width = dataset.train_x:size(3)
opt.max_step = dataset.train_x_glimpse:size(3)
opt.location_image_size = (opt.image_width/opt.glimpse_width)^2
opt.channel_num = dataset.train_x:size(2)
local demo = opt.mode == 'demo' and get_demo(dataset.train_x_glimpse, opt)
--
-- build model
--
print("building model...")
local rnn_model = LSTM.lstm(opt.glimpse_size, opt.rnn_size, opt.num_layers, opt.dropout)
local action_model = nn.Sequential()
action_model:add(nn.SelectTable(-1)) -- take rnn's top h state
action_model:add(nn.Linear(opt.rnn_size, opt.rnn_size))
action_model:add(nn.ELU())
if opt.dropout > 0 then action_model:add(nn.Dropout(opt.dropout)) end
action_model:add(nn.Linear(opt.rnn_size, 8))
action_model:add(nn.ELU())
action_model:add(nn.SoftMax())
action_model:add(nn.MultinomialAction())
local glimpse_model = nn.Sequential()
glimpse_model:add(rnn_model)
glimpse_model:add(nn.ConcatTable()
:add(nn.Identity()) -- rnn states
:add(action_model) -- actions
)
local class_model = nn.Sequential()
class_model:add(nn.SelectTable(-1)) -- take rnn's top h state
class_model:add(nn.Linear(opt.rnn_size, 10))
class_model:add(nn.LogSoftMax())
function get_location_dim_model()
local model = nn.Sequential()
model:add(nn.Linear(opt.location_image_size*opt.channel_num, opt.max_step))
model:add(nn.ELU())
model:add(nn.SoftMax())
model:add(nn.MultinomialAction())
return model
end
local initial_location_model = nn.Sequential()
initial_location_model:add(nn.SpatialMaxPooling(opt.glimpse_width,opt.glimpse_width,opt.glimpse_width,opt.glimpse_width)) -- downsize the original image
initial_location_model:add(nn.Reshape(opt.location_image_size*opt.channel_num))
initial_location_model:add(nn.Dropout(opt.dropout))
initial_location_model:add(nn.ConcatTable()
:add(get_location_dim_model())
:add(get_location_dim_model())
)
initial_location_model:add(nn.JoinTable(2))
local criterion = nn.ClassNLLCriterion()
if opt.gpu > 0 then
glimpse_model:cuda()
class_model:cuda()
criterion:cuda()
initial_location_model:cuda()
if opt.gpu == 2 then
cudnn.convert(glimpse_model, cudnn)
cudnn.convert(criterion, cudnn)
cudnn.benchmark = true
end
end
-- the initial state of rnn
local glimpse_h_init = {}
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
for l=1,opt.num_layers do
if opt.gpu > 0 then
h_init = h_init:cuda()
end
table.insert(glimpse_h_init, h_init:clone())
table.insert(glimpse_h_init, h_init:clone())
end
-- 1:up 2:up-right 3:right 4:down-right 5:down 6:down-left 7:left 8:up-left
local action_offset = torch.LongTensor({
{-1,0}, {-1,1}, {0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}
}):repeatTensor(opt.batch_size, 1, 1)
params, grad_params = model_utils.combine_all_parameters(glimpse_model, class_model, initial_location_model)
--params:uniform(-0.08, 0.08)
glimpse_model_clones = model_utils.clone_many_times(glimpse_model, opt.seq_length)
--
-- optimize
--
local iterations = opt.max_epoch*dataset.train_x_glimpse:size(1)/opt.batch_size
local batch_start = 1
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
-- load batch
local input = dataset.train_x_glimpse[{{batch_start, batch_start+opt.batch_size-1},{}}]
local target = dataset.train_y[{{batch_start, batch_start+opt.batch_size-1}}]
local input_image = dataset.train_x[{{batch_start, batch_start+opt.batch_size-1},{}}]
-- forward pass
local demo_reward_loss = opt.mode == 'demo' and input.new(opt.seq_length, opt.batch_size, 1)
-- initial location
local location = initial_location_model:forward(input_image):long()
local glimpse = {}
local glimpse_h = { [0] = glimpse_h_init }
local daction = {}
for t=1,opt.seq_length do
-- take glimpse
glimpse[t] = get_glimpse(input, location)
if opt.mode == 'demo' then
demo_reward_loss[t] = action_policy.get_demo_reward_loss(glimpse[t], demo[t])
end
-- rnn step
glimpse_model_clones[t]:training()
glimpse_h[t], action = unpack(glimpse_model_clones[t]:forward{glimpse[t], unpack(glimpse_h[t-1])})
-- take action
local index = torch.LongTensor(opt.batch_size,1,2)
action = action:long()--:clamp(1,8)
index[{{},{},{1}}] = action
index[{{},{},{2}}] = action
location:add(action_offset:gather(2, index)):clamp(1, opt.max_step)
end
local glimpse_output = glimpse_h[#glimpse_h]
local class = class_model:forward(glimpse_output)
local loss = criterion:forward(class, target)
local reward_loss = action_policy.get_reward_loss(class, target)
-- backward pass
local dloss_dcriterion = criterion:backward(class, target)
local dloss_dclass = class_model:backward(glimpse_output, dloss_dcriterion)
dclass_dglimpse_h = { [opt.seq_length] = dloss_dclass }
for t=opt.seq_length,1,-1 do
local reward = opt.mode == 'base' and
reward_loss or -- classification reward
demo_reward_loss[t]:add(reward_loss) -- composite reward
dclass_dglimpse_h[t-1] = glimpse_model_clones[t]:backward({glimpse[t], unpack(glimpse_h[t-1])}, {dclass_dglimpse_h[t], reward})
table.remove(dclass_dglimpse_h[t-1], 1) -- remove x gradient
end
-- transfer final state to initial state
glimpse_h_init = glimpse_h[#glimpse_h]
initial_location_model:backward(input_image, reward_loss:expand(reward_loss:size(1),2))
reward_loss = opt.mode == 'base' and reward_loss:mean() or demo_reward_loss:mean()
return loss+reward_loss, grad_params
end
--
-- training
--
class_model:training()
initial_location_model:training()
local optim_state = {learningRate = opt.learning_rate}
print("trainig...")
for it = 1,iterations do
local _, loss = optim.adam(feval, params, optim_state)
if it % 100 == 0 then
print(string.format("batch = %d, loss = %.12f", it, loss[1]))
end
batch_start = batch_start + opt.batch_size
if batch_start > dataset.train_x_glimpse:size(1) then
batch_start = 1
end
end
print("evaluating...")
class_model:evaluate()
initial_location_model:evaluate()
paths.mkdir(opt.output_path)
function get_loss(x, x_image, y, log_fails, draw_actions)
local match = 0.0
local draw_actions_images = 0
for i=1,x:size(1),opt.batch_size do
local input = x[{{i, i+opt.batch_size-1},{}}]
local target = y[{{i, i+opt.batch_size-1}}]
local input_image = x_image[{{i, i+opt.batch_size-1},{}}]
-- initial location
local location = initial_location_model:forward(input_image):long()
local glimpse = {}
local glimpse_h = { [0] = glimpse_h_init }
local loc = {}
local act = {}
for t=1,opt.seq_length do
loc[t] = location:clone()
-- take glimpse
glimpse[t] = get_glimpse(input, location)
-- rnn step
glimpse_model_clones[t]:evaluate()
glimpse_h[t], action = unpack(glimpse_model_clones[t]:forward{glimpse[t], unpack(glimpse_h[t-1])})
-- take action
local index = torch.LongTensor(opt.batch_size,1,2)
action = action:long()
index[{{},{},{1}}] = action
index[{{},{},{2}}] = action
location:add(action_offset:gather(2, index)):clamp(1, opt.max_step)
act[t] = action
end
local glimpse_output = glimpse_h[#glimpse_h]
local class = class_model:forward(glimpse_output)
prob, idx = torch.max(class, 2)
match = match + torch.mean(idx:eq(target):float())/(x:size(1)/opt.batch_size)
if log_fails == true then
local matches = idx:eq(target)
for j=1,matches:size(1) do
if matches[j][1] == 0 then
local k = i-1+j
image.save(opt.output_path..'/fail_'..tostring(k)..'-'..tostring(y[k])..'-'..tostring(idx[j][1])..'.jpg',x[{{k},{}}]:view(28,28))
end
end
end
if draw_actions == true and draw_actions_images < 300 then
local matches = idx:eq(target)
local step = opt.glimpse_step
local width = opt.glimpse_width
for j=1,matches:size(1) do
if matches[j][1] == 1 and draw_actions_images < 300 then
local img_index = i-1+j
local img = x_image[{{img_index},{}}]:view(28,28)
for k,v in pairs(loc) do
local gr_start = (v[j][1]-1)*step + 1
local gc_start = (v[j][2]-1)*step + 1
img[{{gr_start, gr_start+width-1},{gc_start, gc_start+width-1}}]:fill(k==1 and 0.5 or 0.3)
end
image.save(opt.output_path..'/actions_'..tostring(img_index)..'-'..tostring(idx[j][1])..'.jpg',img)
draw_actions_images = draw_actions_images + 1
end
end
end
end
return match
end
print(string.format("training = %.2f%%, testing = %.2f%%",
get_loss(dataset.train_x_glimpse, dataset.train_x, dataset.train_y, false, true)*100.0,
get_loss(dataset.test_x_glimpse, dataset.test_x, dataset.test_y, false, false)*100.0))