-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathlabcode_efficient.py
306 lines (272 loc) · 10.9 KB
/
labcode_efficient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
from Params import args
import Utils.TimeLogger as logger
from Utils.TimeLogger import log
import Utils.NNLayers as NNs
from Utils.NNLayers import FC, Regularize, Activate, Dropout, Bias, getParam, defineParam, defineRandomNameParam
from DataHandler import negSamp, transpose, DataHandler, transToLsts
import tensorflow as tf
from tensorflow.core.protobuf import config_pb2
import pickle
class Recommender:
def __init__(self, sess, handler):
self.sess = sess
self.handler = handler
print('USER', args.user, 'ITEM', args.item)
self.metrics = dict()
mets = ['Loss', 'preLoss', 'Recall', 'NDCG']
for met in mets:
self.metrics['Train' + met] = list()
self.metrics['Test' + met] = list()
def makePrint(self, name, ep, reses, save):
ret = 'Epoch %d/%d, %s: ' % (ep, args.epoch, name)
for metric in reses:
val = reses[metric]
ret += '%s = %.4f, ' % (metric, val)
tem = name + metric
if save and tem in self.metrics:
self.metrics[tem].append(val)
ret = ret[:-2] + ' '
return ret
def run(self):
self.prepareModel()
log('Model Prepared')
if args.load_model != None:
self.loadModel()
stloc = len(self.metrics['TrainLoss']) * args.tstEpoch - (args.tstEpoch - 1)
else:
stloc = 0
init = tf.global_variables_initializer()
self.sess.run(init)
log('Variables Inited')
for ep in range(stloc, args.epoch):
test = (ep % args.tstEpoch == 0)
reses = self.trainEpoch()
log(self.makePrint('Train', ep, reses, test))
if test:
reses = self.testEpoch()
log(self.makePrint('Test', ep, reses, test))
if ep % args.tstEpoch == 0:
self.saveHistory()
print()
reses = self.testEpoch()
log(self.makePrint('Test', args.epoch, reses, True))
self.saveHistory()
def messagePropagate(self, lats, adj):
return Activate(tf.sparse.sparse_dense_matmul(adj, lats), self.actFunc)
def hyperPropagate(self, lats, adj):
lat1 = Activate(tf.transpose(adj) @ lats, self.actFunc)
lat2 = tf.transpose(FC(tf.transpose(lat1), args.hyperNum, activation=self.actFunc)) + lat1
lat3 = tf.transpose(FC(tf.transpose(lat2), args.hyperNum, activation=self.actFunc)) + lat2
lat4 = tf.transpose(FC(tf.transpose(lat3), args.hyperNum, activation=self.actFunc)) + lat3
ret = Activate(adj @ lat4, self.actFunc)
# ret = adj @ lat4
return ret
def edgeDropout(self, mat):
def dropOneMat(mat):
indices = mat.indices
values = mat.values
shape = mat.dense_shape
# newVals = tf.to_float(tf.sign(tf.nn.dropout(values, self.keepRate)))
newVals = tf.nn.dropout(values, self.keepRate)
return tf.sparse.SparseTensor(indices, newVals, shape)
return dropOneMat(mat)
def ours(self):
uEmbed0 = NNs.defineParam('uEmbed0', [args.user, args.latdim], reg=True)
iEmbed0 = NNs.defineParam('iEmbed0', [args.item, args.latdim], reg=True)
uhyper = NNs.defineParam('uhyper', [args.latdim, args.hyperNum], reg=True)
ihyper = NNs.defineParam('ihyper', [args.latdim, args.hyperNum], reg=True)
uuHyper = (uEmbed0 @ uhyper)
iiHyper = (iEmbed0 @ ihyper)
ulats = [uEmbed0]
ilats = [iEmbed0]
gnnULats = []
gnnILats = []
hyperULats = []
hyperILats = []
for i in range(args.gnn_layer):
ulat = self.messagePropagate(ilats[-1], self.edgeDropout(self.adj))
ilat = self.messagePropagate(ulats[-1], self.edgeDropout(self.tpAdj))
hyperULat = self.hyperPropagate(ulats[-1], tf.nn.dropout(uuHyper, self.keepRate))
hyperILat = self.hyperPropagate(ilats[-1], tf.nn.dropout(iiHyper, self.keepRate))
gnnULats.append(ulat)
gnnILats.append(ilat)
hyperULats.append(hyperULat)
hyperILats.append(hyperILat)
ulats.append(ulat + hyperULat + ulats[-1])
ilats.append(ilat + hyperILat + ilats[-1])
ulat = tf.add_n(ulats)
ilat = tf.add_n(ilats)
pckUlat = tf.nn.embedding_lookup(ulat, self.uids)
pckIlat = tf.nn.embedding_lookup(ilat, self.iids)
preds = tf.reduce_sum(pckUlat * pckIlat, axis=-1)
def calcSSL(hyperLat, gnnLat):
posScore = tf.exp(tf.reduce_sum(hyperLat * gnnLat, axis=1) / args.temp)
negScore = tf.reduce_sum(tf.exp(gnnLat @ tf.transpose(hyperLat) / args.temp), axis=1)
uLoss = tf.reduce_sum(-tf.log(posScore / (negScore + 1e-8) + 1e-8))
return uLoss
sslloss = 0
uniqUids, _ = tf.unique(self.uids)
uniqIids, _ = tf.unique(self.iids)
for i in range(len(hyperULats)):
W = NNs.defineRandomNameParam([args.latdim, args.latdim])
pckHyperULat = tf.nn.l2_normalize(tf.nn.embedding_lookup(hyperULats[i], uniqUids), axis=1) @ W#tf.nn.l2_normalize(, axis=1)
pckGnnULat = tf.nn.l2_normalize(tf.nn.embedding_lookup(gnnULats[i], uniqUids), axis=1)#tf.nn.l2_normalize(, axis=1)
pckhyperILat = tf.nn.l2_normalize(tf.nn.embedding_lookup(hyperILats[i], uniqIids), axis=1) @ W#tf.nn.l2_normalize(, axis=1)
pckGNNILat = tf.nn.l2_normalize(tf.nn.embedding_lookup(gnnILats[i], uniqIids), axis=1)#tf.nn.l2_normalize(, axis=1)
uLoss = calcSSL(pckHyperULat, pckGnnULat)
iLoss = calcSSL(pckhyperILat, pckGNNILat)
sslloss += uLoss + iLoss
return preds, sslloss, ulat, ilat
def tstPred(self, ulat, ilat):
pckUlat = tf.nn.embedding_lookup(ulat, self.uids)
allPreds = pckUlat @ tf.transpose(ilat)
allPreds = allPreds * (1 - self.trnPosMask) - self.trnPosMask * 1e8
vals, locs = tf.nn.top_k(allPreds, args.shoot)
return locs
def prepareModel(self):
self.keepRate = tf.placeholder(dtype=tf.float32, shape=[])
NNs.leaky = args.leaky
self.actFunc = 'leakyRelu'
adj = self.handler.trnMat
idx, data, shape = transToLsts(adj, norm=True)
self.adj = tf.sparse.SparseTensor(idx, data, shape)
idx, data, shape = transToLsts(transpose(adj), norm=True)
self.tpAdj = tf.sparse.SparseTensor(idx, data, shape)
self.uids = tf.placeholder(name='uids', dtype=tf.int32, shape=[None])
self.iids = tf.placeholder(name='iids', dtype=tf.int32, shape=[None])
self.trnPosMask = tf.placeholder(name='trnPosMask', dtype=tf.float32, shape=[None, args.item])
self.preds, sslloss, ulat, ilat = self.ours()
self.topLocs = self.tstPred(ulat, ilat)
sampNum = tf.shape(self.uids)[0] // 2
posPred = tf.slice(self.preds, [0], [sampNum])
negPred = tf.slice(self.preds, [sampNum], [-1])
self.preLoss = tf.reduce_sum(tf.maximum(0.0, 1.0 - (posPred - negPred))) / args.batch
self.regLoss = args.reg * Regularize() + args.ssl_reg * sslloss
self.loss = self.preLoss + self.regLoss
globalStep = tf.Variable(0, trainable=False)
learningRate = tf.train.exponential_decay(args.lr, globalStep, args.decay_step, args.decay, staircase=True)
self.optimizer = tf.train.AdamOptimizer(learningRate).minimize(self.loss, global_step=globalStep)
def sampleTrainBatch(self, batIds, labelMat):
temLabel = labelMat[batIds].toarray()
batch = len(batIds)
temlen = batch * 2 * args.sampNum
uLocs = [None] * temlen
iLocs = [None] * temlen
cur = 0
for i in range(batch):
posset = np.reshape(np.argwhere(temLabel[i]!=0), [-1])
sampNum = min(args.sampNum, len(posset))
if sampNum == 0:
poslocs = [np.random.choice(args.item)]
neglocs = [poslocs[0]]
else:
poslocs = np.random.choice(posset, sampNum)
neglocs = negSamp(temLabel[i], sampNum, args.item)
for j in range(sampNum):
posloc = poslocs[j]
negloc = neglocs[j]
uLocs[cur] = uLocs[cur+temlen//2] = batIds[i]
iLocs[cur] = posloc
iLocs[cur+temlen//2] = negloc
cur += 1
uLocs = uLocs[:cur] + uLocs[temlen//2: temlen//2 + cur]
iLocs = iLocs[:cur] + iLocs[temlen//2: temlen//2 + cur]
return uLocs, iLocs
def trainEpoch(self):
num = args.user
sfIds = np.random.permutation(num)[:args.trnNum]
epochLoss, epochPreLoss = [0] * 2
num = len(sfIds)
steps = int(np.ceil(num / args.batch))
for i in range(steps):
st = i * args.batch
ed = min((i+1) * args.batch, num)
batIds = sfIds[st: ed]
target = [self.optimizer, self.preLoss, self.regLoss, self.loss]
feed_dict = {}
uLocs, iLocs = self.sampleTrainBatch(batIds, self.handler.trnMat)
feed_dict[self.uids] = uLocs
feed_dict[self.iids] = iLocs
feed_dict[self.keepRate] = args.keepRate
res = self.sess.run(target, feed_dict=feed_dict, options=config_pb2.RunOptions(report_tensor_allocations_upon_oom=True))
preLoss, regLoss, loss = res[1:]
epochLoss += loss
epochPreLoss += preLoss
log('Step %d/%d: loss = %.2f, regLoss = %.2f ' % (i, steps, loss, regLoss), save=False, oneline=True)
ret = dict()
ret['Loss'] = epochLoss / steps
ret['preLoss'] = epochPreLoss / steps
return ret
def testEpoch(self):
epochRecall, epochNdcg = [0] * 2
ids = self.handler.tstUsrs
num = len(ids)
tstBat = args.batch
steps = int(np.ceil(num / tstBat))
tstNum = 0
for i in range(steps):
st = i * tstBat
ed = min((i+1) * tstBat, num)
batIds = ids[st: ed]
feed_dict = {}
trnPosMask = self.handler.trnMat[batIds].toarray()
feed_dict[self.uids] = batIds
feed_dict[self.trnPosMask] = trnPosMask
feed_dict[self.keepRate] = 1.0
topLocs = self.sess.run(self.topLocs, feed_dict=feed_dict, options=config_pb2.RunOptions(report_tensor_allocations_upon_oom=True))
recall, ndcg = self.calcRes(topLocs, self.handler.tstLocs, batIds)
epochRecall += recall
epochNdcg += ndcg
log('Steps %d/%d: recall = %.2f, ndcg = %.2f ' % (i, steps, recall, ndcg), save=False, oneline=True)
ret = dict()
ret['Recall'] = epochRecall / num
ret['NDCG'] = epochNdcg / num
return ret
def calcRes(self, topLocs, tstLocs, batIds):
assert topLocs.shape[0] == len(batIds)
allRecall = allNdcg = 0
recallBig = 0
ndcgBig =0
for i in range(len(batIds)):
temTopLocs = list(topLocs[i])
temTstLocs = tstLocs[batIds[i]]
tstNum = len(temTstLocs)
maxDcg = np.sum([np.reciprocal(np.log2(loc + 2)) for loc in range(min(tstNum, args.shoot))])
recall = dcg = 0
for val in temTstLocs:
if val in temTopLocs:
recall += 1
dcg += np.reciprocal(np.log2(temTopLocs.index(val) + 2))
recall = recall / tstNum
ndcg = dcg / maxDcg
allRecall += recall
allNdcg += ndcg
return allRecall, allNdcg
def saveHistory(self):
if args.epoch == 0:
return
with open('History/' + args.save_path + '.his', 'wb') as fs:
pickle.dump(self.metrics, fs)
saver = tf.train.Saver()
saver.save(self.sess, 'Models/' + args.save_path)
log('Model Saved: %s' % args.save_path)
def loadModel(self):
saver = tf.train.Saver()
saver.restore(sess, 'Models/' + args.load_model)
with open('History/' + args.load_model + '.his', 'rb') as fs:
self.metrics = pickle.load(fs)
log('Model Loaded')
if __name__ == '__main__':
logger.saveDefault = True
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
log('Start')
handler = DataHandler()
handler.LoadData()
log('Load Data')
with tf.Session(config=config) as sess:
recom = Recommender(sess, handler)
recom.run()