-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
42 lines (37 loc) · 1.62 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2
def calculate_image_similarity(img1, img2):
"""
计算两张图像的相似性,返回一个相似度评分(0-1之间)。
参数:
img1 (numpy.ndarray): 第一张图像,格式为 OpenCV 读取的图像格式。
img2 (numpy.ndarray): 第二张图像,格式为 OpenCV 读取的图像格式。
返回:
float: 相似度评分(0-1之间)。
"""
# 检查图像尺寸是否一致
if img1.shape != img2.shape:
# 统一调整为较小的尺寸
min_height = min(img1.shape[0], img2.shape[0])
min_width = min(img1.shape[1], img2.shape[1])
img1 = cv2.resize(img1, (min_width, min_height))
img2 = cv2.resize(img2, (min_width, min_height))
# 将图像转换为灰度图
gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 计算图像的直方图
hist_img1 = cv2.calcHist([gray_img1], [0], None, [256], [0, 256])
hist_img2 = cv2.calcHist([gray_img2], [0], None, [256], [0, 256])
# 归一化直方图
cv2.normalize(hist_img1, hist_img1)
cv2.normalize(hist_img2, hist_img2)
# 计算相似度
similarity = cv2.compareHist(hist_img1, hist_img2, cv2.HISTCMP_CORREL)
return similarity
# 示例图像(你可以替换为你的实际图像路径)
img1 = cv2.imread('path/to/image1.jpg')
img2 = cv2.imread('path/to/image2.jpg')
if img1 is None or img2 is None:
print("无法读取图像,请检查文件路径。")
else:
similarity_score = calculate_image_similarity(img1, img2)
print(f"图像相似度评分: {similarity_score}")