Skip to content

Commit

Permalink
Polishing
Browse files Browse the repository at this point in the history
  • Loading branch information
harishmohanraj committed Jan 20, 2025
1 parent ff4c92f commit 4701e27
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions notebook/agentchat_MathChat.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@
"source": [
"### Example 1\n",
"\n",
"Problem: Find all $x$ that satisfy the inequality $(2x+10)(x+3)<(3x+9)(x+8)$. Express your answer in interval notation.\n",
"Problem: Find all $x$ that satisfy the inequality `$(2x+10)(x+3)<(3x+9)(x+8)$`. Express your answer in interval notation.\n",
"\n",
"Correct Solution: \n",
"We have \\begin{align*} (2x+10)(x+3)&<(3x+9)(x+8) \\quad \\Rightarrow\n",
Expand All @@ -145,7 +145,7 @@
"\\\\ (2x+10-(3x+24))(x+3)&<0 \\quad \\Rightarrow\n",
"\\\\ (-x-14)(x+3)&<0 \\quad \\Rightarrow\n",
"\\\\ (x+14)(x+3)&>0.\n",
"\\end{align*} This inequality is satisfied if and only if $(x+14)$ and $(x+3)$ are either both positive or both negative. Both factors are positive for $x>-3$ and both factors are negative for $x<-14$. When $-14<x<-3$, one factor is positive and the other negative, so their product is negative. Therefore, the range of $x$ that satisfies the inequality is $ \\boxed{(-\\infty, -14)\\cup(-3,\\infty)} $."
"\\end{align*} This inequality is satisfied if and only if $(x+14)$ and $(x+3)$ are either both positive or both negative. Both factors are positive for $x>-3$ and both factors are negative for `$x<-14$`. When `$-14<x<-3$`, one factor is positive and the other negative, so their product is negative. Therefore, the range of $x$ that satisfies the inequality is $ \\boxed{(-\\infty, -14)\\cup(-3,\\infty)} $."
]
},
{
Expand Down Expand Up @@ -971,7 +971,7 @@
"Problem: Find all numbers $a$ for which the graph of $y=x^2+a$ and the graph of $y=ax$ intersect. Express your answer in interval notation.\n",
"\n",
"\n",
"Correct Solution: If these two graphs intersect then the points of intersection occur when \\[x^2+a=ax,\\] or \\[x^2-ax+a=0.\\] This quadratic has solutions exactly when the discriminant is nonnegative: \\[(-a)^2-4\\cdot1\\cdot a\\geq0.\\] This simplifies to \\[a(a-4)\\geq0.\\] This quadratic (in $a$) is nonnegative when $a$ and $a-4$ are either both $\\ge 0$ or both $\\le 0$. This is true for $a$ in $$(-\\infty,0]\\cup[4,\\infty).$$ Therefore the line and quadratic intersect exactly when $a$ is in $\\boxed{(-\\infty,0]\\cup[4,\\infty)}$.\n"
"Correct Solution: If these two graphs intersect then the points of intersection occur when \\[x^2+a=ax,\\] or \\[x^2-ax+a=0.\\] This quadratic has solutions exactly when the discriminant is nonnegative: \\[(-a)^2-4\\cdot1\\cdot a\\geq0.\\] This simplifies to \\[a(a-4)\\geq0.\\] This quadratic (in $a$) is nonnegative when $a$ and $a-4$ are either both $\\ge 0$ or both $\\le 0$. This is true for $a$ in $$(-\\infty,0]\\cup[4,\\infty).$$ Therefore the line and quadratic intersect exactly when $a$ is in `$\\boxed{(-\\infty,0]\\cup[4,\\infty)}$`.\n"
]
},
{
Expand Down

0 comments on commit 4701e27

Please sign in to comment.