-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq_attn_updated.py
249 lines (199 loc) · 9.74 KB
/
seq2seq_attn_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
"""
@author: tanma
"""
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense, Embedding, CuDNNLSTM, Flatten, TimeDistributed, Dropout, LSTMCell, RNN
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.python.keras.utils import tf_utils
from tensorflow.keras import backend as K
import unicodedata
import re
import numpy as np
import os
import time
import shutil
path_to_file = 'C:\\Users\\tanma.TANMAY-STATION\\Downloads/deu.txt'
class LanguageIndex():
def __init__(self, lang):
self.lang = lang
self.word2idx = {}
self.idx2word = {}
self.vocab = set()
self.create_index()
def create_index(self):
for phrase in self.lang:
self.vocab.update(phrase.split(' '))
self.vocab = sorted(self.vocab)
self.word2idx["<pad>"] = 0
self.idx2word[0] = "<pad>"
for i,word in enumerate(self.vocab):
self.word2idx[word] = i + 1
self.idx2word[i+1] = word
def unicode_to_ascii(s):
return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')
def preprocess_sentence(w):
w = unicode_to_ascii(w.lower().strip())
w = re.sub(r"([?.!,¿])", r" \1 ", w)
w = re.sub(r'[" "]+', " ", w)
w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)
w = w.rstrip().strip()
w = "<start> " + w + " <end>"
return w
def max_length(t):
return max(len(i) for i in t)
def create_dataset(path, num_examples):
lines = open(path, encoding="UTF-8").read().strip().split("\n")
word_pairs = [[preprocess_sentence(w) for w in l.split("\t")] for l in lines[:num_examples]]
return word_pairs
def load_dataset(path, num_examples):
pairs = create_dataset(path, num_examples)
out_lang = LanguageIndex(hin for en, hin in pairs)
in_lang = LanguageIndex(en for en, hin in pairs)
input_data = [[in_lang.word2idx[s] for s in en.split(' ')] for en, sp in pairs]
output_data = [[out_lang.word2idx[s] for s in sp.split(' ')] for en, sp in pairs]
max_length_in, max_length_out = max_length(input_data), max_length(output_data)
input_data = tf.keras.preprocessing.sequence.pad_sequences(input_data, maxlen=max_length_in, padding="post")
output_data = tf.keras.preprocessing.sequence.pad_sequences(output_data, maxlen=max_length_out, padding="post")
return input_data, output_data, in_lang, out_lang, max_length_in, max_length_out
num_examples = 20000
input_data, teacher_data, input_lang, target_lang, len_input, len_target = load_dataset(path_to_file, num_examples)
target_data = [[teacher_data[n][i+1] for i in range(len(teacher_data[n])-1)] for n in range(len(teacher_data))]
target_data = tf.keras.preprocessing.sequence.pad_sequences(target_data, maxlen=len_target, padding="post")
target_data = target_data.reshape((target_data.shape[0], target_data.shape[1], 1))
p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 256
units = 1024
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)
class AttentionLSTMCell(LSTMCell):
def __init__(self, **kwargs):
self.attentionMode = False
super(AttentionLSTMCell, self).__init__(**kwargs)
@tf_utils.shape_type_conversion
def build(self, input_shape):
self.dense_constant = TimeDistributed(Dense(self.units, name="AttLstmInternal_DenseConstant"))
self.dense_state = Dense(self.units, name="AttLstmInternal_DenseState")
self.dense_transform = Dense(1, name="AttLstmInternal_DenseTransform")
batch, input_dim = input_shape[0]
batch, timesteps, context_size = input_shape[-1]
lstm_input = (batch, input_dim + context_size)
return super(AttentionLSTMCell, self).build(lstm_input)
def setInputSequence(self, input_seq):
self.input_seq = input_seq
self.input_seq_shaped = self.dense_constant(input_seq)
self.timesteps = tf.shape(self.input_seq)[-2]
def setAttentionMode(self, mode_on=False):
self.attentionMode = mode_on
def call(self, inputs, states, constants):
ytm, stm = states
stm_repeated = K.repeat(self.dense_state(stm), self.timesteps)
combined_stm_input = self.dense_transform(
keras.activations.relu(stm_repeated + self.input_seq_shaped))
score_vector = keras.activations.softmax(combined_stm_input, 1)
context_vector = K.sum(score_vector * self.input_seq, 1)
inputs = K.concatenate([inputs, context_vector])
res = super(AttentionLSTMCell, self).call(inputs=inputs, states=states)
if(self.attentionMode):
return (K.reshape(score_vector, (-1, self.timesteps)), res[1])
else:
return res
class LSTMWithAttention(RNN):
def __init__(self, units, **kwargs):
cell = AttentionLSTMCell(units=units)
self.units = units
super(LSTMWithAttention, self).__init__(cell, **kwargs)
@tf_utils.shape_type_conversion
def build(self, input_shape):
self.input_dim = input_shape[0][-1]
self.timesteps = input_shape[0][-2]
return super(LSTMWithAttention, self).build(input_shape)
def call(self, x, constants, **kwargs):
if isinstance(x, list):
self.x_initial = x[0]
else:
self.x_initial = x
self.cell._dropout_mask = None
self.cell._recurrent_dropout_mask = None
self.cell.setInputSequence(constants[0])
return super(LSTMWithAttention, self).call(inputs=x, constants=constants, **kwargs)
attenc_inputs = Input(shape=(len_input,), name="attenc_inputs")
attenc_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
attenc_lstm = CuDNNLSTM(units=units, return_sequences=True, return_state=True)
attenc_outputs, attstate_h, attstate_c = attenc_lstm(attenc_emb(attenc_inputs))
attenc_states = [attstate_h, attstate_c]
attdec_inputs = Input(shape=(None,))
attdec_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
attdec_lstm = LSTMWithAttention(units=units, return_sequences=True, return_state=True)
attdec_lstm_out, _, _ = attdec_lstm(inputs=attdec_emb(attdec_inputs),
constants=attenc_outputs,
initial_state=attenc_states)
attdec_d1 = Dense(units, activation="relu")
attdec_d2 = Dense(vocab_out_size, activation="softmax")
attdec_out = attdec_d2(Dropout(rate=.4)(attdec_d1(Dropout(rate=.4)(attdec_lstm_out))))
attmodel = Model([attenc_inputs, attdec_inputs], attdec_out)
attmodel.compile(optimizer=tf.train.AdamOptimizer(), loss="sparse_categorical_crossentropy", metrics=['sparse_categorical_accuracy'])
epochs = 20
atthist = attmodel.fit([input_data, teacher_data], target_data,
batch_size=BATCH_SIZE,
epochs=epochs,
validation_split=0.2)
def sentence_to_vector(sentence, lang):
pre = preprocess_sentence(sentence)
vec = np.zeros(len_input)
sentence_list = [lang.word2idx[s] for s in pre.split(' ')]
for i,w in enumerate(sentence_list):
vec[i] = w
return vec
attmodel.save('attn.h5')
def translate(input_sentence, infenc_model, infmodel, attention=False):
sv = sentence_to_vector(input_sentence, input_lang)
sv = sv.reshape(1,len(sv))
[emb_out, sh, sc] = infenc_model.predict(x=sv)
i = 0
start_vec = target_lang.word2idx["<start>"]
stop_vec = target_lang.word2idx["<end>"]
cur_vec = np.zeros((1,1))
cur_vec[0,0] = start_vec
cur_word = "<start>"
output_sentence = ""
while cur_word != "<end>" and i < (len_target-1):
i += 1
if cur_word != "<start>":
output_sentence = output_sentence + " " + cur_word
x_in = [cur_vec, sh, sc]
if attention:
x_in += [emb_out]
[nvec, sh, sc] = infmodel.predict(x=x_in)
cur_vec[0,0] = np.argmax(nvec[0,0])
cur_word = target_lang.idx2word[np.argmax(nvec[0,0])]
return output_sentence
def createAttentionInference(attention_mode=False):
attencoder_model = Model(attenc_inputs, [attenc_outputs, attstate_h, attstate_c])
state_input_h = Input(shape=(units,), name="state_input_h")
state_input_c = Input(shape=(units,), name="state_input_c")
attenc_seq_out = Input(shape=attenc_outputs.get_shape()[1:], name="attenc_seq_out")
inf_attdec_inputs = Input(shape=(None,), name="inf_attdec_inputs")
attdec_lstm.cell.setAttentionMode(attention_mode)
attdec_res, attdec_h, attdec_c = attdec_lstm(attdec_emb(inf_attdec_inputs),
initial_state=[state_input_h, state_input_c],
constants=attenc_seq_out)
attinf_model = None
if not attention_mode:
inf_attdec_out = attdec_d2(attdec_d1(attdec_res))
attinf_model = Model(inputs=[inf_attdec_inputs, state_input_h, state_input_c, attenc_seq_out],
outputs=[inf_attdec_out, attdec_h, attdec_c])
else:
attinf_model = Model(inputs=[inf_attdec_inputs, state_input_h, state_input_c, attenc_seq_out],
outputs=[attdec_res, attdec_h, attdec_c])
return attencoder_model, attinf_model
attencoder_model, attinf_model = createAttentionInference()
def decode(input_seq):
return translate(input_seq, attencoder_model, attinf_model, True)