-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_vp.py
281 lines (213 loc) · 8.45 KB
/
eval_vp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from vllm import LLM, SamplingParams
from tqdm import tqdm
from transformers import AutoTokenizer
from multiprocessing.pool import ThreadPool
from multiprocessing import Queue, Manager
from categories import categories, subcategories
from vp_utils import VLLMRemote
import numpy as np
import pandas as pd
import argparse
import os
import json
import random
import math
import ray
"""Parse arguments"""
parser = argparse.ArgumentParser(description="Configure the inference")
parser.add_argument("--ntrain", "-k", type=int, default=5)
parser.add_argument("--save-dir", "-s", type=str, default="./eval_results")
parser.add_argument("--data-dir", "-d", type=str, default="data")
parser.add_argument("--continuous-batch", type=int, default=0, help="Whether to activate continuous batch")
parser.add_argument("--model", type=str, default="../../model/AquilaChat2-34B-GPTQ-exlv2", help="Model to load")
parser.add_argument("--data-parallel-size", type=int, default=1, help="Data parallelism size")
args = parser.parse_args()
quantized_model_dir = args.model
seed = 0
choices = ['A', 'B', 'C', 'D']
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
def group_data_idx(iter_length, llm_num):
if iter_length <= llm_num:
return [range(iter_length)]
else:
batch_size = math.ceil(iter_length / llm_num)
num_batches = math.ceil(iter_length / batch_size)
grouped_idx = [range(i*batch_size,(i+1)*batch_size) for i in range(num_batches-1)]
grouped_idx.append(range((num_batches-1)*batch_size, iter_length))
return grouped_idx
def inference_worker(q, input_ids, label, cors):
llm_id = q.get()
pred = ray.get(llm_id.eval_generate.remote(input_ids))
q.put(llm_id)
cor = pred == label
cors.append(cor)
def batched_inference_worker(q, input_ids_list, label_list, cors):
llm_id = q.get()
preds = ray.get(llm_id.batched_eval_generate.remote(input_ids_list))
q.put(llm_id)
for i in range(len(preds)):
cor = preds[i] == label_list[i]
cors.append(cor)
def inference(args, subject, llm_ids, tokenizer, dev_df, test_df):
manager = Manager()
cors = manager.list([])
"""Prepare ThreadPool"""
q = Queue()
for llm_id in llm_ids:
q.put(llm_id)
pool = ThreadPool(len(llm_ids))
for i in range(test_df.shape[0]):
"""Assemble prompt"""
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = [tokenizer(prompt).input_ids]
"""Check if the prompt is too long"""
while len(input_ids[0]) > 2048:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = [tokenizer(prompt).input_ids]
"""Get the label"""
label = test_df.iloc[i, test_df.shape[1] - 1]
"""Appedn to ThreadPool"""
while True:
if not q.empty():
pool.apply_async(inference_worker, args=(q, input_ids, label, cors))
break
pool.close()
pool.join()
acc = np.mean(cors)
cors = np.array(cors)
print(f"Average accuracy {acc:.3f} - {subject}")
return cors, acc
def batched_inference(args, subject, llm_ids, tokenizer, dev_df, test_df):
manager = Manager()
cors = manager.list([])
"""Prepare ThreadPool"""
q = Queue()
for llm_id in llm_ids:
q.put(llm_id)
pool = ThreadPool(len(llm_ids))
group_idx = group_data_idx(test_df.shape[0], len(llm_ids))
for i in range(len(group_idx)):
"""Assemble prompt"""
input_ids_list = []
for idx in group_idx[i]:
k = args.ntrain
prompt_end = format_example(test_df, idx, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = [tokenizer(prompt).input_ids]
"""Check if the prompt is too long"""
while len(input_ids[0]) > 2048:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = [tokenizer(prompt).input_ids]
input_ids_list.append(input_ids[0])
"""Get the label"""
label_list = []
for idx in group_idx[i]:
label = test_df.iloc[idx, test_df.shape[1] - 1]
label_list.append(label)
"""Appedn to ThreadPool"""
while True:
if not q.empty():
pool.apply_async(batched_inference_worker, args=(q, input_ids_list, label_list, cors))
break
pool.close()
pool.join()
acc = np.mean(cors)
cors = np.array(cors)
print(f"Average accuracy {acc:.3f} - {subject}")
return cors, acc
if __name__=="__main__":
"""Configure the environment"""
os.environ['TOKENIZERS_PARALLELISM'] = "true"
ray.init()
random.seed(seed)
"""Load the model and tokenizer"""
llm_ids = [VLLMRemote.remote(quantized_model_dir) for _ in range(args.data_parallel_size)]
hosts = ray.get([llm_id.host.remote() for llm_id in llm_ids])
for host in hosts:
print("Model is ready at", host)
tokenizer = AutoTokenizer.from_pretrained(args.model,
trust_remote_code=True)
"""Load the dataset"""
subjects = sorted(
[
f.split("_test.csv")[0]
for f in os.listdir(os.path.join(args.data_dir, "test"))
if "_test.csv" in f
]
)
"""Specify subjects"""
all_cors = [] # All True False lists for different categories
subcat_cors = {
subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists
}
cat_cors = {cat: [] for cat in categories}
"""Start inference"""
for subject in tqdm(subjects):
dev_df = pd.read_csv(
os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
)[: args.ntrain]
test_df = pd.read_csv(
os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
)
if args.continuous_batch == 0:
cors, acc = inference(args, subject, llm_ids, tokenizer, dev_df, test_df)
else:
cors, acc = batched_inference(args, subject, llm_ids, tokenizer, dev_df, test_df)
subcats = subcategories[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in categories.keys():
if subcat in categories[key]:
cat_cors[key].append(cors)
all_cors.append(cors)
"""Summary"""
print("########### Summary #############")
results = {"subcategories": {}, "categories": {}}
for subcat in subcat_cors:
subcat_acc = np.mean(np.concatenate(subcat_cors[subcat]))
results["subcategories"][subcat] = subcat_acc
print("Average accuracy {:.3f} - {}".format(subcat_acc, subcat))
for cat in cat_cors:
cat_acc = np.mean(np.concatenate(cat_cors[cat]))
results["categories"][cat] = cat_acc
print("Average accuracy {:.3f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(np.concatenate(all_cors))
results["weighted_accuracy"] = weighted_acc
print("Average accuracy: {:.3f}".format(weighted_acc))
"""Log results"""
results_file = os.path.join(
args.save_dir, "accuracies.json"
)
with open(results_file, "w") as f:
json.dump(results, f)