-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
178 lines (134 loc) · 5.36 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# python imports
import argparse
import os
from pprint import pprint
import sys, pickle
# torch imports
import torch
import torch.nn as nn
import torch.utils.data
# for visualization
from torch.utils.tensorboard import SummaryWriter
# our code
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader
from libs.modeling import make_meta_arch
from libs.utils import (Logger, valid_one_epoch,
fix_random_seed, ModelEma)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def override_cfg_params(cfg, args):
if args.gpu is not None:
cfg["devices"] = args.gpu
else:
cfg['devices'] = [i for i in range(torch.cuda.device_count())]
if args.data_root is not None:
cfg["dataset"]["data_root"] = args.data_root
if args.test_batch_size > 0:
cfg["loader"]["test_batch_size"] = args.test_batch_size
if cfg["train_cfg"]["loss_weights"]["loss"] == "corn":
cfg["model"]["score_bins"] -= 1
if args.cv_fold > -1:
cfg["dataset"]["cross_val_id"] = args.cv_fold
if args.cv_split_file != "":
cfg["dataset"]["cross_val_split_file"] = args.cv_split_file
if cfg["dataset"]["use_feats"] == False:
cfg["model"]["finetune_feat_extractor"]= True
cfg["model"]["feat_extractor_type"]= 'i3d'
cfg["model"]["feat_extractor_weights_path"]= './pre_trained/model_rgb.pth'
if cfg["model"]["use_stochastic_embd"] == False:
cfg["train_cfg"]["loss_weights"]["phase_vib"] = 0.0
return cfg
def create_train_val_dataloaders(cfg, rng_generator):
train_dataset = make_dataset(
cfg['dataset_name'],
True,
cfg['train_split'],
**cfg['dataset']
)
val_dataset = make_dataset(
cfg['dataset_name'],
False,
cfg['val_split'],
**cfg['dataset']
)
# data loaders
train_loader = make_data_loader(
train_dataset, True, rng_generator, **cfg['loader'])
val_loader = make_data_loader(
val_dataset, False, None, **cfg['loader'])
return (train_loader, val_loader)
################################################################################
def main(args):
"""main function that handles training / inference"""
"""1. setup parameters / folders"""
# parse args
args.start_epoch = 0
if os.path.isfile(args.config):
cfg = load_config(args.config)
else:
raise ValueError("Config file does not exist.")
torch.set_warn_always(False)
# fix the random seeds (this will fix everything)
rng_generator = fix_random_seed(cfg['init_rand_seed'], include_cuda=True)
cfg = override_cfg_params(cfg, args)
print("Args")
pprint(vars(args), indent=4, stream=sys.__stdout__,sort_dicts=False)
pprint(cfg, stream=sys.__stdout__,sort_dicts=False)
"""2. create dataset / dataloader"""
train_loader, val_loader = create_train_val_dataloaders(cfg, rng_generator)
"""3. create model, optimizer, and scheduler"""
# model
model = make_meta_arch(cfg['model_name'], **cfg['model'])
# not ideal for multi GPU training, ok for now
# gpu_ids = ','.join(str(device_id) for device_id in cfg['devices'])
# os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids
# model = nn.DataParallel(model, device_ids=cfg['devices'])
model = nn.DataParallel(model).cuda()
ckpt_file = args.ckpt
if not os.path.isfile(ckpt_file):
raise ValueError("CKPT file does not exist!")
"""4. load ckpt"""
print("=> loading checkpoint '{}'".format(ckpt_file))
# load ckpt, reset epoch / best rmse
checkpoint = torch.load(
ckpt_file,
map_location = lambda storage, loc: storage.cuda(cfg['devices'][0])
)
model.load_state_dict(checkpoint['state_dict'], strict=True)
del checkpoint
"""5. validation loop"""
print("\nStart testing model {:s} ...".format(cfg['model_name']))
with torch.no_grad():
curr_srcc, curr_rl2, metric_dict = valid_one_epoch(
val_loader,
model,
-1,
cfg = cfg,
tb_writer=None,
print_freq=args.print_freq,
save_predictions=True
)
print("SRCC: {:.4f}, RL2: {:.4f}".format(curr_srcc, curr_rl2))
with open(os.path.join(os.path.dirname(ckpt_file), "epoch_{:03d}_srcc_{:.3f}_rl2_{:.3f}_outputs.pkl".format(-1, curr_srcc, curr_rl2)), "wb") as f:
pickle.dump(metric_dict, f)
print("All done!")
return
################################################################################
if __name__ == '__main__':
"""Entry Point"""
# the arg parser
parser = argparse.ArgumentParser(
description='Train')
parser.add_argument('config', metavar='DIR',
help='path to a config file')
parser.add_argument('-p', '--print-freq', default=10, type=int,
help='print frequency (default: 10 iterations)')
parser.add_argument('--ckpt', default='', type=str,
help='name of exp folder (default: none)')
parser.add_argument('--data_root', type=str, metavar='PATH',)
parser.add_argument('--test_batch_size', default=-1, type=int)
parser.add_argument('--cv_fold', default=-1, type=int)
parser.add_argument('--cv_split_file', default='', type=str)
parser.add_argument('--gpu', nargs='*')
args = parser.parse_args()
main(args)