-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathschubfach_32.cc
700 lines (596 loc) · 20.4 KB
/
schubfach_32.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// Copyright 2020 Alexander Bolz
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
#include "schubfach_32.h"
//--------------------------------------------------------------------------------------------------
// This file contains an implementation of the Schubfach algorithm as described in
//
// [1] Raffaello Giulietti, "The Schubfach way to render doubles",
// https://drive.google.com/open?id=1luHhyQF9zKlM8yJ1nebU0OgVYhfC6CBN
//--------------------------------------------------------------------------------------------------
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#if _MSC_VER
#include <intrin.h>
#endif
#ifndef SF_ASSERT
#define SF_ASSERT(X) assert(X)
#endif
//==================================================================================================
//
//==================================================================================================
template <typename Dest, typename Source>
static inline Dest ReinterpretBits(Source source)
{
static_assert(sizeof(Dest) == sizeof(Source), "size mismatch");
Dest dest;
std::memcpy(&dest, &source, sizeof(Source));
return dest;
}
namespace {
struct Single
{
static_assert(std::numeric_limits<float>::is_iec559
&& std::numeric_limits<float>::digits == 24
&& std::numeric_limits<float>::max_exponent == 128,
"IEEE-754 single-precision implementation required");
using value_type = float;
using bits_type = uint32_t;
// static constexpr int32_t MaxDigits10 = std::numeric_limits<value_type>::max_digits10;
static constexpr int32_t SignificandSize = std::numeric_limits<value_type>::digits; // = p (includes the hidden bit)
static constexpr int32_t ExponentBias = std::numeric_limits<value_type>::max_exponent - 1 + (SignificandSize - 1);
// static constexpr int32_t MaxExponent = std::numeric_limits<value_type>::max_exponent - 1 - (SignificandSize - 1);
// static constexpr int32_t MinExponent = std::numeric_limits<value_type>::min_exponent - 1 - (SignificandSize - 1);
static constexpr bits_type MaxIeeeExponent = bits_type{2 * std::numeric_limits<value_type>::max_exponent - 1};
static constexpr bits_type HiddenBit = bits_type{1} << (SignificandSize - 1); // = 2^(p-1)
static constexpr bits_type SignificandMask = HiddenBit - 1; // = 2^(p-1) - 1
static constexpr bits_type ExponentMask = MaxIeeeExponent << (SignificandSize - 1);
static constexpr bits_type SignMask = ~(~bits_type{0} >> 1);
bits_type bits;
explicit Single(bits_type bits_) : bits(bits_) {}
explicit Single(value_type value) : bits(ReinterpretBits<bits_type>(value)) {}
bits_type PhysicalSignificand() const {
return bits & SignificandMask;
}
bits_type PhysicalExponent() const {
return (bits & ExponentMask) >> (SignificandSize - 1);
}
bool IsFinite() const {
return (bits & ExponentMask) != ExponentMask;
}
bool IsInf() const {
return (bits & ExponentMask) == ExponentMask && (bits & SignificandMask) == 0;
}
bool IsNaN() const {
return (bits & ExponentMask) == ExponentMask && (bits & SignificandMask) != 0;
}
bool IsZero() const {
return (bits & ~SignMask) == 0;
}
bool SignBit() const {
return (bits & SignMask) != 0;
}
};
} // namespace
//==================================================================================================
//
//==================================================================================================
// Returns floor(x / 2^n).
//
// Technically, right-shift of negative integers is implementation defined...
// Should easily be optimized into SAR (or equivalent) instruction.
static inline int32_t FloorDivPow2(int32_t x, int32_t n)
{
#if 0
return x < 0 ? ~(~x >> n) : (x >> n);
#else
return x >> n;
#endif
}
// Returns floor(log_10(2^e))
// static inline int32_t FloorLog10Pow2(int32_t e)
// {
// SF_ASSERT(e >= -1500);
// SF_ASSERT(e <= 1500);
// return FloorDivPow2(e * 1262611, 22);
// }
// Returns floor(log_10(3/4 2^e))
// static inline int32_t FloorLog10ThreeQuartersPow2(int32_t e)
// {
// SF_ASSERT(e >= -1500);
// SF_ASSERT(e <= 1500);
// return FloorDivPow2(e * 1262611 - 524031, 22);
// }
// Returns floor(log_2(10^e))
static inline int32_t FloorLog2Pow10(int32_t e)
{
SF_ASSERT(e >= -1233);
SF_ASSERT(e <= 1233);
return FloorDivPow2(e * 1741647, 19);
}
//==================================================================================================
//
//==================================================================================================
static inline uint64_t ComputePow10_Single(int32_t k)
{
// There are unique beta and r such that 10^k = beta 2^r and
// 2^63 <= beta < 2^64, namely r = floor(log_2 10^k) - 63 and
// beta = 2^-r 10^k.
// Let g = ceil(beta), so (g-1) 2^r < 10^k <= g 2^r, with the latter
// value being a pretty good overestimate for 10^k.
// NB: Since for all the required exponents k, we have g < 2^64,
// all constants can be stored in 128-bit integers.
static constexpr int32_t kMin = -31;
static constexpr int32_t kMax = 45;
static constexpr uint64_t g[kMax - kMin + 1] = {
0x81CEB32C4B43FCF5, // -31
0xA2425FF75E14FC32, // -30
0xCAD2F7F5359A3B3F, // -29
0xFD87B5F28300CA0E, // -28
0x9E74D1B791E07E49, // -27
0xC612062576589DDB, // -26
0xF79687AED3EEC552, // -25
0x9ABE14CD44753B53, // -24
0xC16D9A0095928A28, // -23
0xF1C90080BAF72CB2, // -22
0x971DA05074DA7BEF, // -21
0xBCE5086492111AEB, // -20
0xEC1E4A7DB69561A6, // -19
0x9392EE8E921D5D08, // -18
0xB877AA3236A4B44A, // -17
0xE69594BEC44DE15C, // -16
0x901D7CF73AB0ACDA, // -15
0xB424DC35095CD810, // -14
0xE12E13424BB40E14, // -13
0x8CBCCC096F5088CC, // -12
0xAFEBFF0BCB24AAFF, // -11
0xDBE6FECEBDEDD5BF, // -10
0x89705F4136B4A598, // -9
0xABCC77118461CEFD, // -8
0xD6BF94D5E57A42BD, // -7
0x8637BD05AF6C69B6, // -6
0xA7C5AC471B478424, // -5
0xD1B71758E219652C, // -4
0x83126E978D4FDF3C, // -3
0xA3D70A3D70A3D70B, // -2
0xCCCCCCCCCCCCCCCD, // -1
0x8000000000000000, // 0
0xA000000000000000, // 1
0xC800000000000000, // 2
0xFA00000000000000, // 3
0x9C40000000000000, // 4
0xC350000000000000, // 5
0xF424000000000000, // 6
0x9896800000000000, // 7
0xBEBC200000000000, // 8
0xEE6B280000000000, // 9
0x9502F90000000000, // 10
0xBA43B74000000000, // 11
0xE8D4A51000000000, // 12
0x9184E72A00000000, // 13
0xB5E620F480000000, // 14
0xE35FA931A0000000, // 15
0x8E1BC9BF04000000, // 16
0xB1A2BC2EC5000000, // 17
0xDE0B6B3A76400000, // 18
0x8AC7230489E80000, // 19
0xAD78EBC5AC620000, // 20
0xD8D726B7177A8000, // 21
0x878678326EAC9000, // 22
0xA968163F0A57B400, // 23
0xD3C21BCECCEDA100, // 24
0x84595161401484A0, // 25
0xA56FA5B99019A5C8, // 26
0xCECB8F27F4200F3A, // 27
0x813F3978F8940985, // 28
0xA18F07D736B90BE6, // 29
0xC9F2C9CD04674EDF, // 30
0xFC6F7C4045812297, // 31
0x9DC5ADA82B70B59E, // 32
0xC5371912364CE306, // 33
0xF684DF56C3E01BC7, // 34
0x9A130B963A6C115D, // 35
0xC097CE7BC90715B4, // 36
0xF0BDC21ABB48DB21, // 37
0x96769950B50D88F5, // 38
0xBC143FA4E250EB32, // 39
0xEB194F8E1AE525FE, // 40
0x92EFD1B8D0CF37BF, // 41
0xB7ABC627050305AE, // 42
0xE596B7B0C643C71A, // 43
0x8F7E32CE7BEA5C70, // 44
0xB35DBF821AE4F38C, // 45
};
SF_ASSERT(k >= kMin);
SF_ASSERT(k <= kMax);
return g[static_cast<uint32_t>(k - kMin)];
}
static inline uint32_t Lo32(uint64_t x)
{
return static_cast<uint32_t>(x);
}
static inline uint32_t Hi32(uint64_t x)
{
return static_cast<uint32_t>(x >> 32);
}
#if defined(__SIZEOF_INT128__)
static inline uint32_t RoundToOdd(uint64_t g, uint32_t cp)
{
__extension__ using uint128_t = unsigned __int128;
const uint128_t p = uint128_t{g} * cp;
const uint32_t y1 = Lo32(static_cast<uint64_t>(p >> 64));
const uint32_t y0 = Hi32(static_cast<uint64_t>(p));
return y1 | (y0 > 1);
}
#elif defined(_MSC_VER) && defined(_M_X64)
static inline uint32_t RoundToOdd(uint64_t g, uint32_t cpHi)
{
uint64_t p1 = 0;
uint64_t p0 = _umul128(g, cpHi, &p1);
const uint32_t y1 = Lo32(p1);
const uint32_t y0 = Hi32(p0);
return y1 | (y0 > 1);
}
#else
static inline uint32_t RoundToOdd(uint64_t g, uint32_t cp)
{
const uint64_t b01 = uint64_t{Lo32(g)} * cp;
const uint64_t b11 = uint64_t{Hi32(g)} * cp;
const uint64_t hi = b11 + Hi32(b01);
const uint32_t y1 = Hi32(hi);
const uint32_t y0 = Lo32(hi);
return y1 | (y0 > 1);
}
#endif
// Returns whether value is divisible by 2^e2
static inline bool MultipleOfPow2(uint32_t value, int32_t e2)
{
SF_ASSERT(e2 >= 0);
SF_ASSERT(e2 <= 31);
return (value & ((uint32_t{1} << e2) - 1)) == 0;
}
namespace {
struct FloatingDecimal32 {
uint32_t digits; // num_digits <= 9
int32_t exponent;
};
}
static inline FloatingDecimal32 ToDecimal32(uint32_t ieee_significand, uint32_t ieee_exponent)
{
uint32_t c;
int32_t q;
if (ieee_exponent != 0)
{
c = Single::HiddenBit | ieee_significand;
q = static_cast<int32_t>(ieee_exponent) - Single::ExponentBias;
if (0 <= -q && -q < Single::SignificandSize && MultipleOfPow2(c, -q))
{
return {c >> -q, 0};
}
}
else
{
c = ieee_significand;
q = 1 - Single::ExponentBias;
}
const bool is_even = (c % 2 == 0);
const bool accept_lower = is_even;
const bool accept_upper = is_even;
const bool lower_boundary_is_closer = (ieee_significand == 0 && ieee_exponent > 1);
// const int32_t qb = q - 2;
const uint32_t cbl = 4 * c - 2 + lower_boundary_is_closer;
const uint32_t cb = 4 * c;
const uint32_t cbr = 4 * c + 2;
// (q * 1262611 ) >> 22 == floor(log_10( 2^q))
// (q * 1262611 - 524031) >> 22 == floor(log_10(3/4 2^q))
SF_ASSERT(q >= -1500);
SF_ASSERT(q <= 1500);
const int32_t k = FloorDivPow2(q * 1262611 - (lower_boundary_is_closer ? 524031 : 0), 22);
const int32_t h = q + FloorLog2Pow10(-k) + 1;
SF_ASSERT(h >= 1);
SF_ASSERT(h <= 4);
const uint64_t pow10 = ComputePow10_Single(-k);
const uint32_t vbl = RoundToOdd(pow10, cbl << h);
const uint32_t vb = RoundToOdd(pow10, cb << h);
const uint32_t vbr = RoundToOdd(pow10, cbr << h);
const uint32_t lower = vbl + !accept_lower;
const uint32_t upper = vbr - !accept_upper;
// See Figure 4 in [1].
// And the modifications in Figure 6.
const uint32_t s = vb / 4; // NB: 4 * s == vb & ~3 == vb & -4
if (s >= 10) // vb >= 40
{
const uint32_t sp = s / 10; // = vb / 40
const bool up_inside = lower <= 40 * sp;
const bool wp_inside = 40 * sp + 40 <= upper;
// if (up_inside || wp_inside) // NB: At most one of u' and w' is in R_v.
if (up_inside != wp_inside)
{
return {sp + wp_inside, k + 1};
}
}
const bool u_inside = lower <= 4 * s;
const bool w_inside = 4 * s + 4 <= upper;
if (u_inside != w_inside)
{
return {s + w_inside, k};
}
// NB: s & 1 == vb & 0x4
const uint32_t mid = 4 * s + 2; // = 2(s + t)
const bool round_up = vb > mid || (vb == mid && (s & 1) != 0);
return {s + round_up, k};
}
//==================================================================================================
// ToChars
//==================================================================================================
static inline void Utoa_2Digits(char* buf, uint32_t digits)
{
static constexpr char Digits100[200] = {
'0','0','0','1','0','2','0','3','0','4','0','5','0','6','0','7','0','8','0','9',
'1','0','1','1','1','2','1','3','1','4','1','5','1','6','1','7','1','8','1','9',
'2','0','2','1','2','2','2','3','2','4','2','5','2','6','2','7','2','8','2','9',
'3','0','3','1','3','2','3','3','3','4','3','5','3','6','3','7','3','8','3','9',
'4','0','4','1','4','2','4','3','4','4','4','5','4','6','4','7','4','8','4','9',
'5','0','5','1','5','2','5','3','5','4','5','5','5','6','5','7','5','8','5','9',
'6','0','6','1','6','2','6','3','6','4','6','5','6','6','6','7','6','8','6','9',
'7','0','7','1','7','2','7','3','7','4','7','5','7','6','7','7','7','8','7','9',
'8','0','8','1','8','2','8','3','8','4','8','5','8','6','8','7','8','8','8','9',
'9','0','9','1','9','2','9','3','9','4','9','5','9','6','9','7','9','8','9','9',
};
SF_ASSERT(digits <= 99);
std::memcpy(buf, &Digits100[2 * digits], 2);
}
static inline int32_t TrailingZeros_2Digits(uint32_t digits)
{
static constexpr int8_t TrailingZeros100[100] = {
2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
SF_ASSERT(digits <= 99);
return TrailingZeros100[digits];
}
static inline int32_t PrintDecimalDigitsBackwards(char* buf, uint32_t output)
{
int32_t tz = 0; // number of trailing zeros removed.
int32_t nd = 0; // number of decimal digits processed.
// At most 9 digits remaining
if (output >= 10000)
{
const uint32_t q = output / 10000;
const uint32_t r = output % 10000;
output = q;
buf -= 4;
if (r != 0)
{
const uint32_t rH = r / 100;
const uint32_t rL = r % 100;
Utoa_2Digits(buf + 0, rH);
Utoa_2Digits(buf + 2, rL);
tz = TrailingZeros_2Digits(rL == 0 ? rH : rL) + (rL == 0 ? 2 : 0);
}
else
{
tz = 4;
}
nd = 4;
}
// At most 5 digits remaining.
if (output >= 100)
{
const uint32_t q = output / 100;
const uint32_t r = output % 100;
output = q;
buf -= 2;
Utoa_2Digits(buf, r);
if (tz == nd)
{
tz += TrailingZeros_2Digits(r);
}
nd += 2;
if (output >= 100)
{
const uint32_t q2 = output / 100;
const uint32_t r2 = output % 100;
output = q2;
buf -= 2;
Utoa_2Digits(buf, r2);
if (tz == nd)
{
tz += TrailingZeros_2Digits(r2);
}
nd += 2;
}
}
// At most 2 digits remaining.
SF_ASSERT(output >= 1);
SF_ASSERT(output <= 99);
if (output >= 10)
{
const uint32_t q = output;
buf -= 2;
Utoa_2Digits(buf, q);
if (tz == nd)
{
tz += TrailingZeros_2Digits(q);
}
// nd += 2;
}
else
{
const uint32_t q = output;
SF_ASSERT(q >= 1);
SF_ASSERT(q <= 9);
*--buf = static_cast<char>('0' + q);
}
return tz;
}
static inline int32_t DecimalLength(uint32_t v)
{
SF_ASSERT(v >= 1);
SF_ASSERT(v <= 999999999u);
if (v >= 100000000u) { return 9; }
if (v >= 10000000u) { return 8; }
if (v >= 1000000u) { return 7; }
if (v >= 100000u) { return 6; }
if (v >= 10000u) { return 5; }
if (v >= 1000u) { return 4; }
if (v >= 100u) { return 3; }
if (v >= 10u) { return 2; }
return 1;
}
static inline char* FormatDigits(char* buffer, uint32_t digits, int32_t decimal_exponent, bool force_trailing_dot_zero = false)
{
static constexpr int32_t MinFixedDecimalPoint = -4;
static constexpr int32_t MaxFixedDecimalPoint = 9;
static_assert(MinFixedDecimalPoint <= -1, "internal error");
static_assert(MaxFixedDecimalPoint >= 1, "internal error");
SF_ASSERT(digits >= 1);
SF_ASSERT(digits <= 999999999u);
SF_ASSERT(decimal_exponent >= -99);
SF_ASSERT(decimal_exponent <= 99);
int32_t num_digits = DecimalLength(digits);
const int32_t decimal_point = num_digits + decimal_exponent;
const bool use_fixed = MinFixedDecimalPoint <= decimal_point && decimal_point <= MaxFixedDecimalPoint;
// Prepare the buffer.
// Avoid calling memset/memcpy with variable arguments below...
std::memset(buffer + 0, '0', 16);
std::memset(buffer + 16, '0', 16);
static_assert(MinFixedDecimalPoint >= -30, "internal error");
static_assert(MaxFixedDecimalPoint <= 32, "internal error");
int32_t decimal_digits_position;
if (use_fixed)
{
if (decimal_point <= 0)
{
// 0.[000]digits
decimal_digits_position = 2 - decimal_point;
}
else
{
// dig.its
// digits[000]
decimal_digits_position = 0;
}
}
else
{
// dE+123 or d.igitsE+123
decimal_digits_position = 1;
}
char* digits_end = buffer + decimal_digits_position + num_digits;
const int32_t tz = PrintDecimalDigitsBackwards(digits_end, digits);
digits_end -= tz;
num_digits -= tz;
// decimal_exponent += tz; // => decimal_point unchanged.
if (use_fixed)
{
if (decimal_point <= 0)
{
// 0.[000]digits
buffer[1] = '.';
buffer = digits_end;
}
else if (decimal_point < num_digits)
{
// dig.its
std::memmove(buffer + decimal_point + 1, buffer + decimal_point, 8);
buffer[decimal_point] = '.';
buffer = digits_end + 1;
}
else
{
// digits[000]
buffer += decimal_point;
if (force_trailing_dot_zero)
{
std::memcpy(buffer, ".0", 2);
buffer += 2;
}
}
}
else
{
buffer[0] = buffer[1];
if (num_digits == 1)
{
// dE+123
++buffer;
}
else
{
// d.igitsE+123
buffer[1] = '.';
buffer = digits_end;
}
const int32_t scientific_exponent = decimal_point - 1;
// SF_ASSERT(scientific_exponent != 0);
std::memcpy(buffer, scientific_exponent < 0 ? "e-" : "e+", 2);
buffer += 2;
const uint32_t k = static_cast<uint32_t>(scientific_exponent < 0 ? -scientific_exponent : scientific_exponent);
if (k < 10)
{
*buffer++ = static_cast<char>('0' + k);
}
else
{
Utoa_2Digits(buffer, k);
buffer += 2;
}
}
return buffer;
}
static inline char* ToChars(char* buffer, float value, bool force_trailing_dot_zero = false)
{
const Single v(value);
const uint32_t significand = v.PhysicalSignificand();
const uint32_t exponent = v.PhysicalExponent();
if (exponent != Single::MaxIeeeExponent) // [[likely]]
{
// Finite
buffer[0] = '-';
buffer += v.SignBit();
if (exponent != 0 || significand != 0) // [[likely]]
{
// != 0
const auto dec = ToDecimal32(significand, exponent);
return FormatDigits(buffer, dec.digits, dec.exponent, force_trailing_dot_zero);
}
else
{
std::memcpy(buffer, "0.0 ", 4);
buffer += force_trailing_dot_zero ? 3 : 1;
return buffer;
}
}
if (significand == 0)
{
buffer[0] = '-';
buffer += v.SignBit();
std::memcpy(buffer, "inf ", 4);
return buffer + 3;
}
else
{
std::memcpy(buffer, "nan ", 4);
return buffer + 3;
}
}
//==================================================================================================
//
//==================================================================================================
char* schubfach::Ftoa(char* buffer, float value)
{
return ToChars(buffer, value);
}