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Abstract—Accurate prediction of snow depth is crucial for
various applications, including hydrological risk assessment,
flood forecasting, water resource management, and weather
forecasting. Prior research has seen success in utilizing deep
learning techniques to generate snow height maps; however, many
studies have been constrained by limited geographical coverage
or the use of coarse-resolution data. Our approach aims to
overcome these limitations by leveraging high-resolution LiDAR
maps, satellite imagery, digital elevation models, and three novel
time-dependent variables. Moreover, we introduce an adaptation
of the original U-Net architecture to function as a pixel-wise
regressor. We demonstrate its ability to provide fine-grained and
accurate snow depth predictions over large geographical areas.
The proposed method is able to model snow depth in the high
mountainous region of Davos with average errors of 0.52m and
resolutions of 5m.

Index Terms—computer vision, pixel-wise regression, snow
depth maps

I. INTRODUCTION

Snow is a crucial component of the Earth’s hydrological
cycle, a fundamental process that governs the movement and
distribution of water on our planet. Precise measurements of
snow depth stand as a vital necessity, serving as a cornerstone
in the prediction and effective management of water resources.
This need for accuracy becomes even more pronounced in re-
gions characterized by rugged mountainous landscapes, where
snow plays a pivotal role in shaping seasonal water reservoirs
[1].

Beyond its hydrological significance, snow exerts a notable
influence on the Earth’s energy balance. This is attributed to
its high albedo, a term that refers to the capacity to reflect
a substantial portion of the incoming solar radiation. In this
context, the presence of snow cover amplifies the intricate
interplay of radiative energy, impacting the amount of energy
absorbed by the Earth’s surface and the amount reflected back
into the atmosphere [2].

In collaboration with Wegaw, a geospatial start-up, this
research project aims to harness the potential of reflected light
with solar panels. While there’s growing interest in utilizing
this reflected light for energy generation, there’s currently a
lack of research regarding the optimal placement of solar
panels in such scenarios. The Wegaw group has undertaken
a mission to enhance the accuracy of snow depth modeling at
high spatial resolution.

The intricate topography of tall mountain ranges affects the
spatial variability of snow cover across different scales [3].

Moreover, it also makes many places on Earth inaccessible to
traditional methods of measuring snow depth, such as manual
snow surveys or remote sensing with optical sensors.

In recent years, satellite imagery has become more accessi-
ble to the general public with missions such as Copernicus1,
from the European Space Agency (ESA); or MODIS2, from
the National Aeronautics and Space Administration (NASA).
Both missions collect public data on an hourly basis. The high
availability in both spatial and temporal resolution of satellite
imagery has induced many works that attempt to overcome
the snow prediction problem. Although there is a consistent
problem in the literature, annotated information for snow
depth is scarce and usually found in low spatial resolution.
Liu et al. [4] used brightness temperatures measured by
passive microwave radiometers to retrieve snow depth over
the Arctic Ocean with a spatial resolution of 25km. Moosavi
et al. [5] used Moderate-resolution Imaging Spectroradiometer
(MODIS) [6] bands with a resolution varying from 250m to
1km to obtain a fractional snow cover in the Central Alborz
Mountains.

Airborne Light Detection and Ranging (LiDAR) is nowa-
days one of the most reliable means of terrain mapping, with
spatial resolutions of less than one meter and errors typically
under the decimeter [7]–[9]. Due to such precise mapping,
LiDAR imagery has become a great tool for modeling at
higher resolution. Wulf et al. [10] validated their snow-depth
prediction approach with airborne snow depth surveys from
the European Alps and the Rocky Mountains. Cartwright et
al. [11] used LiDAR imagery to train a snow-depth prediction
model in Southwest Alberta. Most of those datasets are not
publicly available, limiting both peer review and general public
accessibility. Although there are some public datasets, they are
generally not sufficiently big to train machine learning (ML)
or deep learning (DL) models, which could be a promising
way to address the problem.

Classical machine learning approaches include regression
tree [12], random forest regression [13], or support vector
regression [13]. On the other hand, deep learning approaches
include the use of Deep Belief Networks (DBN) [14] or
recurrent networks such as the Long-Short Term Memory
models (LSTM) [15]. Convolutional Networks (CNN) are also

1https://www.copernicus.eu
2https://modis.gsfc.nasa.gov
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commonly used in this context, such as in [16], whose authors
proposed a Deep Residual Network for snow depth prediction
at resolutions of ≈ 25km. To the best of our knowledge, very
few research works have tackled the problem at high spatial
resolution. Daudt et al. [17] achieved a root-mean-square error
(RMSE) between 0.44-0.92m at 10m resolution with the use
of a CNN-based on ConvGRU cells [18], which introduced a
recurrence allowing the model to take samples from previous
days to predict the next one.

The snow depth prediction survey carried out by Eberhard
et al. [19] suggests that snow depth maps generated from very
high resolution (≈ 10m) satellite imagery reach accuracies up
to 0.5–1.0 m in terms of RMSE.

The input features are often images derived from satellite
imagery and the geomorphology of the area, but there is no
consensus on the best predictors. Some of them are commonly
used such as the elevation or the surface slope, for this
matter we used the insightful knowledge of the Wegaw team
which supported us with the selection of input variables. They
are discussed in Section II. Furthermore, we encountered a
difficulty related to temporal changes. When working with
snow depth mapping, the majority of input features remain
constant (as they are geomorphological attributes), therefore,
we must introduce a feature that depends on the conditions
of a given day. In Section II we introduce three different
variables based on snow depth measurements collected at
meteorological stations.

Along with the suggested features, we propose a novel
approach based on the UNet [20] architecture. It was selected
as our base architecture due to its effectiveness in segmentation
problems, its ability to handle both local and global contextual
information, its good performance even with limited training
data, and its generative nature. In this context, we have adapted
the original architecture to serve as a pixel-wise regressor.
Although not novel, there is limited research on its application
in regression problems. We decided to investigate its potential
in this specific domain.

The main contributions of this work are:

• We present three methods for incorporating temporal
variability into the analysis using meteorological station
data. They are proven to improve predictions and serve
as scaling factors, indicating that the higher the variables
the higher the predictions.

• We propose a new method of creating snow depth maps
based on an adaptation of the original UNet architecture.
Moreover, we are also able to demonstrate its capabilities
when utilized as a pixel-wise regressor.

• We present an informative study that may serve as a
foundation for future research.

• We introduce an image generation technique that consists
in cropping irregular maps into many squared-shape
images in an optimized way, making every zone equally
present in the final dataset. Moreover, this approach also
serves as a data augmentation technique. It is publicly

available as a Python library called MAPchete3.
The rest of the manuscript is organized as follows. Section

II provides a review of the selected input features. Section
III describes how to process raster files to adapt them to our
model’s input layers. Section IV covers the UNet architecture
and our proposal. Section V reviews the implementation
details. Section VI defines the metrics employed in this study.
Section VII details the experimentation carried out, including
the experiments related to the architecture parametrization,
feature selection, and predictions and errors analysis. Section
VIII covers the key findings of our work and proposes future
lines of research.

II. DATASET

In this section, we introduce the features proposed in our
research. These features are essential components of our
predictive model and play a crucial role in understanding
the factors influencing snow accumulation and distribution.
However, it is important to note that the availability of data
for certain features, such as wind in high mountainous areas,
is limited. This data is typically collected in meteorological
stations, which are often located on plains and easily accessi-
ble terrain. As a result, there is a lack of data for regions with
complex mountainous terrain. To address this limitation, it is
necessary to introduce variables that cover the entire range of
mountainous areas, including remote and isolated regions.

Within the domain of geospatial analysis, the utilization
of raster data is widespread. In this particular section, we
introduce all the predictor variables in this format, as it proves
to be the most suitable for both geodata and deep learning
models. In this representation, each grid cell is assigned a
value that encapsulates the distinctive features of a specific
geographical area.

Firstly, we introduce the concept of slicing, as it is men-
tioned in the next sections.

A. Slicing the data

Given an input feature, slicing can be defined as averaging
the snow depth in intervals. By averaging the snow depth
within these intervals, slicing provides a macro-scale perspec-
tive on how snow depth varies with respect to the feature.
Fig. 1a plots the snow depth versus elevation in the region of
Davos. Fig. 1b plots the results of slicing, averaging the snow
depth each meter. As can be observed, the correlation between
snow depth and a sample variable becomes more evident after
the slicing approach.

There is also another benefit of the slicing approach. For
both graphs, we fitted a linear regression obtaining the follow-
ing formulas that correspond to Fig. 1a and 1b, respectively:

HS = 146× 10−5h− 1.830 (1)

HS = 124× 10−5h− 1.353 (2)

3https://github.com/abetatos/mapchete
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(a) (b)

Fig. 1: Snow depth vs elevation on the region of Davos in 2013: (a) before and (b) after slicing. A probability density function
(based on Scott’s Rule [21]) has been applied for color grading to give a sense of point density.

with h the elevation and HS the snow depth.
The abundance of data points influences the linear regres-

sion to be more inclined towards those regions. To overcome
this bias and better study the correlations between variables,
slicing is employed as a normalization technique. It allows for
a more controlled analysis and facilitates a clearer understand-
ing of the relationships between the variables.

B. Snow Depth

In recent years, Unmanned Aerial Systems (UAS) have
proven highly effective for geodata measurements, utilizing
LiDAR technologies to accurately map surfaces, with errors
typically below the decimeter level as demonstrated by Buhler
et al. [9]. To derive snow depth information, UAS scan entire
mountain ranges mapping the height across the area. By
subtracting this height measurement from the known elevation
of the bare mountains, the snow depth across the landscape
can be precisely mapped.

Although it is an optimal technology for the purpose of
snow mapping, it comes with a great cost and thus publicly
available data is scarce. The dataset used in this research
includes two sources of information obtained with this tech-
nology:

• Nine snow depth maps collected from 2017 to 2020 in the
Swiss regions of Davos, Laucherenalp, and Saflischpass.
These data were provided by Wegaw.

• Eight snow depth maps collected from 2010 to 2016
in the Swiss region of Davos. These data are publicly
available at Envidat4.

This gives us a total of sixteen maps spanning the years
2010 to 2020. In the following sections, the snow depth maps
are denoted as HS.

4https://www.envidat.ch/dataset

C. Geospatial imagery

Snow accumulation depends on a great number of physical
processes but there is no consensus on the variables that should
be used to estimate snow depth (HS). Consequently, we
selected a set of variables based on the recent literature and the
experience of the Wegaw team. Fig. 2 shows a representation
of the ten variables considered in this research, which are
described in the following.

1) Digital Elevation Model: A digital elevation model
(DEM) is a 3D representation of the Earth’s surface topog-
raphy and determines the elevation at a given location. By
incorporating a DEM, we enabling out model to understand
the spatial characteristics of the environment.

DEM models for Switzerland are publicly available at the
Swiss Federal Office of Topography5. They consist of a 3D
representation of the Swiss Alps with a spatial resolution of
0.5m and are renewed every six years.

2) Slope: The surface slope is, by definition, the derivative
of the height. The usefulness of this attribute lies in the fact
that snow tends to accumulate more in plain areas, while it
is prone to decay in steeper ones. Moreover, the slope plays
a role in the amount of radiative energy the surface receives
[22].

3) Surface Aspect: The surface aspect shows the degree
between the normal of the surface and a given direction D⃗,
which commonly refers to the North vector. For instance,
an aspect value of 0° represents a slope facing north, while
an aspect of 90° represents a slope facing east. It has been
proven to be an effective variable when it comes to snow
depth modeling as same-facing surfaces have similar exposure
to external factors, such as hourly sun exposure or wind trends
[23]. It has a drawback, the discontinuity between 0 and 360º

5https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
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Fig. 2: Representative samples for the test area of our dataset.
The input variables are: 0) DEM, 1) Slope, 2) Aspect, 3) FFD,
4) TPI, 5) TPIGWG, 6) SCE, 7) ProbStat, 8) Voronoi, and 9)
ProbStat. Values have been normalized to [0, 1]. Shift to red
means higher values.

could compromise the usefulness of the variable. In Section
VII-G we review the impacts of the discontinuity in our setup.

4) Far From D⃗: When the aspect is compared with the
snow depth using the slicing approach. We noticed that the
minimums of the features are well-defined and tend to be in the
same direction, while maximums are more sparse. Fig. 3 shows
this behavior. We decided to test if Aspect is more informative
for lower snow depths computing a new input feature that we
called Far From D⃗ or FFD.

It consists of a rotation of the aspect to the minimum snow
direction obtaining values in the range [−180, 180]. We then
applied the module so that we obtained several values in
the range [0, 180]. The usefulness of this variable relies on
avoiding the aforementioned discontinuity and simplifying the
variable, thus making training convergence faster and easier

Fig. 3: Sliced snow depth vs slope aspect.

for the model. In Section VII-E we review the impacts of this
new feature.

5) Topographic position index: The topographic position
index (TPI) is a measure of the elevation of the raster grid cell
compared to the elevation of a specified number of neighbor
cells. By definition, it determines concave and convex zones,
and thus it can predict whether a zone is prone to accumulate
snow. It has also been proven to be a good predictor for
the purpose of snow depth prediction [17], [24]. The main
definition of TPI is the difference between the elevation of
a central point and the average elevation of its surrounding
points within a defined radius. But the way of computing the
difference might vary. Here we focus on two of them:

The first one is provided by the WhiteBoxTools [25] library
and it is based on the study of Newman et al. [26]. It is referred
to as TPI in the rest of the manuscript. This algorithm adds
a regularization in order to obtain values in the range [−1, 1]
following:

TPI =

{
z−µ

µ−zmin
if z < µ

z−µ
zmax−µ if z ≥ µ

(3)

where z represents the elevation, µ the average elevation, zmax
the maximum elevation, and zmin the minimum elevation.

The second one is provided by Wegaw and it is referred to
as TPIWGW. This algorithm does not add a regularization so
we filter the maximum and minimum values to ±5 following
the advice of the Wegaw team.

6) Snow Cover Extent: The snow cover extent (SCE) is a
probabilistic measure that indicates where snow tends to be
present. These maps are obtained in two steps:

1) The first part of the process was provided by the Wegaw
team and it consists of binary maps that indicate pres-
ence of snow in a certain area. It was obtained following
the approach by Grizonnet et al. [27], with the use of
the following satellite resources: CRYO6, MODIS7, and
GFS8. Wegaw generated a total of 153 maps spanning
from 2017 to 2020.

2) Subsequently, we decided to average the images, result-
ing in a probabilistic map that provides insights into the
likelihood of snow coverage in a given area throughout
the year.

This particular feature alone has the capability to indicate
the distribution of snow, and thus, it could serve as a robust
predictor.

7) Temporal dependent variables: Station data for snow
measurements refers to meteorological observations collected
at specific locations to quantify snow-related parameters. In
our context, station data specifically refers to the recorded
snow depth.

6https://land.copernicus.eu/pan-european/biophysical-parameters/
high-resolution-snow-and-ice-monitoring

7https://modis-snow-ice.gsfc.nasa.gov/?c=MOD10 L2
8https://www.ncei.noaa.gov/products/weather-climate-models/

global-forecast

https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-snow-and-ice-monitoring 
https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-snow-and-ice-monitoring 
https://modis-snow-ice.gsfc.nasa.gov/?c=MOD10_L2
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast


Wegaw provided us with data within the area of interest
ranging from 2017 to 2021. Station data consists of scattered
measurements on the geography of the area, and thus it needs
to be processed before being used as a proper input for deep
learning models. In the following, we discuss three different
approaches to the same problem.

It is worth mentioning that for some samples our station
data is more recent than our snow depth maps (Section II-B).
In these situations, we simulate station data by utilizing the
snow measurements from the corresponding location within
the LiDAR snow depth maps.

The first variable introduced in our work comes from an
internal study of Wegaw. They detected that a linear correlation
exists between digital elevation models and the snow depth at
macro-scale. The company suggested using this feature to our
advantage.

We can compute a linear regression with the use of the
aforementioned station data such as:

HS = αd+ β (4)

where d is the elevation of the station and HS is the snow
measurement.

Digital elevation models provide the height at each given
point, and thus, once α and β are computed, we can apply
the linear regression over the DEM model to generate a new
feature that depends on station data, introducing the desired
temporal variability.

Initially, we relied solely on DEMStat as our temporal
dependent variable. However, we decided to also include new
variables based on station proximity to further improve results.

As we have daily data for a station over six years, we can
perform statistically relevant analysis. Normalizing snow depth
values over the time series could make one station comparable
to another, even if their location characteristics are highly
different. We introduce two new features where station data
has been normalized.

• A Voronoi map is a type of spatial partitioning diagram
that divides a space into regions based on the closest
proximity to a set of seed points, in our case, station
data.
One drawback to consider is that regions located farther
away from measurement stations may exhibit lower ac-
curacy compared to those closer by. Additionally, areas
situated between two adjacent stations might experience
a feature discontinuity, potentially leading to decreased
model performance.

• To avoid the aforementioned discontinuity, we propose a
new feature that aggregates scores by considering data
from multiple stations. This score is defined as follows:

ProbStat =

∑N
i HSi/di∑N
i 1/di

(5)

where N is the number of stations, HS is the snow depth
measurement, and d is the distance to the station.

One advantage of this approach is that it provides a
continuous map that more accurately reflects distant areas
from the stations. It is important to note that when the
distance is zero, it is essential to include an epsilon value
to prevent discontinuity.

Hereby we present three different methods of including
temporal variability in our dataset. They are a key research
focus as a high-quality temporally-dependent variable holds
the potential for snow depth modeling on any day of the year.

III. DATA PREPARATION

Although LiDAR maps offer exceptional precision, they
do come with a drawback: drone-generated data often takes
irregular shapes. This poses challenges when directly applying
it to deep learning models, which typically expect square-
shaped input data. Additionally, LiDAR-generated maps may
contain cells with empty values, commonly referred to as
nodata values. These empty cells can be attributed to various
factors such as sensor limitations in capturing certain areas,
occlusions caused by vegetation or buildings, or simply data
gaps in the LiDAR scans due to terrain variations or scan
angle limitations. It is worth mentioning that areas out of
the interest area are also treated as nodata values. These
limitations condition the generation of images needed to train
our proposed model. For the sake of clearance, we refer to each
pixel of the image as a grid cell and each image of N × N
grid cells as a tile, which can be used to feed our network.

A high density of nodata values could have an undesired
effect in the training phase. For this reason, we have selected
tiles with a maximum of 30% of nodata values.

In this setup, if we were to crop rasters into tiles with
a random algorithm, grid cells near limit zones could be
underrepresented in the final dataset. In order to normalize the
density of cell presence in our final dataset, an optimization
algorithm was developed. It is an algorithm based on an
iterative process. Firstly, it computes a raster indicating the
spatial distribution of the generated tiles, then identifies the
tile whose grid cells are least frequently represented in the
final dataset on average and selects that tile as the new image
to generate. The process continues until each grid cell in
the original map appears a specified number of times on
average in the final dataset. Fig. 4 illustrates the differences
between following a random approach (RANDchete) and ours
(MAXchete).

To the extent of our knowledge, there is no other deep
learning approach that takes this into account. The algorithm
can be publicly accessed throughout MAPchete library9.

We have selected four as the final frequency, which indicates
that, on average, each grid cell appears four times in our final
dataset. It is worth mentioning that it effectively increases the
representation of grid cells in the final dataset, functioning as
a valuable data augmentation technique.

In Section VII-D we review how this algorithm also can be
used to improve the smoothness of the predicted maps.

9https://github.com/abetatos/mapchete
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Fig. 4: Number of times a given cell appears in the final dataset
with the use of a random approach (RANDchete) and with an
optimization algorithm (MAXchete) after 100 iterations in the
zone of Saflischpass.

For a given frequency, the number of tiles is dependent on
their size. As can be seen in Table I, different configurations
led to different numbers of images in our dataset. Among the
different sizes considered, we selected 256 × 256 as it is a
compromise between a higher spatial coverage and the number
of images in the complete dataset.

TABLE I: Number of tiles in our dataset depending on the
size of the tiles in the configuration described in Section III.

Size 512× 512 256× 256 128× 128
No. tiles 1353 5333 21145

Once we had defined the input size, we projected the avail-
able data onto a consistent coordinate system. In particular,
we used the EPSG:2056, which it is specifically designed for
Switzerland. Subsequently, each input feature was resized to a
uniform resolution of 5m, despite the more typical use of 10m
resolutions. This choice was motivated by the availability of
LiDAR maps with resolutions as fine as 2m. Our intention
was twofold: to augment the number of training images,
and to assess whether this improved resolution would yield
satisfactory results.

IV. NETWORK ARCHITECTURE

Autoencoder architectures [28] have become state-of-the-
art in approaching diverse issues. In particular, they are able
to extract meaningful information, encode it into a dense
vector representation, and decode it. There is a particular
type, the convolutional autoencoders (CAE), which are able
to generate complete images. Among all the approaches based
on the encoder-decoder architecture, we have considered the
UNet [20] for its proven competitiveness in different fields of
application.

The UNet architecture consists of a downsampling path
(encoder), an upsampling path (decoder), and a connection
between them (bottleneck). The different components are
depicted in Fig. 5 and described in the following.

• The encoder is composed of convolutional blocks which
are followed by Rectified Linear Unit (ReLU) activa-
tion functions and maxpooling layers. The convolutional

blocks increase the depth of feature channels, and the
activation function introduces non-linearity to capture
local information within the input image. Maxpooling
layers then reduce the spatial resolution while preserving
the most important features. This progressive reduction
of dimensions allows the network to capture increasingly
abstract and high-level features as it moves deeper into
the encoder.

• The bottleneck of the architecture serves as a critical
bridge between the encoder and decoder components.
While it facilitates the connection between these parts,
it also plays a crucial role in ensuring that the high-level
features learned in the encoder’s contracting path can
be effectively utilized in the decoder’s expanding path.
The bottleneck section extracts complex representations
by combining information from multiple channels while
disregarding irrelevant information.

• The decoder is designed to reconstruct the segmentation
map from the contracted feature map produced by the
encoder. Each step in the decoder consists of an up-
sampling layer, which augments the spatial dimensions,
followed by a convolutional block. It is worth noting
that there is a skip connection from the encoder path to
each step in the decoder. These skip connections enable
the network to capture information from both low-level
and high-level features. The low-level features capture
fine details and local information, while the high-level
features capture more global and abstract information. By
combining information from different scales and levels of
abstraction, the decoder effectively generates an image.

The architecture definition can be addressed by defining two
hyperparameters:

• Depth: the number of max-pooling layers.
• Width: after each convolutional block, the number of

channels increases, augmenting the feature representation
of the input image. We define the width as a factor that
increases the number of representative feature channels.

We define the number of channels as nchannels = 2 ×
width× depth.

The analysis of the parametrization can be found in Section
VII-C.

It is important to highlight that the UNet architecture is
typically utilized for segmentation purposes. However, to func-
tion as a regressor we eliminated the last activation function,
which in the original architecture classifies each pixel into a
given set of categories. In this adaptation, rather than assigning
fixed labels, each pixel in the generated image represents a
continuous value: the snow depth.

A. Masked Loss Function

The loss function measures the difference between a model’s
predictions compared to the expected output (base truth). By
utilizing the derivatives of this function, the weights of the
neural network can be adjusted in order to diminish the loss
function, thus making predictions more similar to the expected



Fig. 5: Original UNet architecture [29] for an image of 32x32
pixels. Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the
different operations.

output. A wide range of existing functions from the literature
can be employed. However, a challenge arises when dealing
with missing data values, as they lack meaningful information
and should be disregarded when calculating the loss function.
Consequently, it becomes necessary to develop a customized
loss function specifically designed for handling such scenarios.

A masked loss function takes into account a masking
mechanism for handling missing or irrelevant data. In our
case, we used the quadratic loss and masked it following this
expression.

Given a prediction ŷ and the base truth y we defined our
loss function as:

L =

N∑
i,j

(ŷij − yij)
2, ∀yij ̸= nodata (6)

where y is the base truth, ŷ is the prediction, and N is the
number of pixels.

B. Optimizer

In deep learning models, optimizers are used to update the
model weights during the learning process. It is important to
note that not all optimizers are equally suitable for all tasks.
We selected a combination of two common optimizers:

• SGD [30] is a simple optimization algorithm that updates
model parameters based on the negative gradient of
the loss function with respect to a batch of images. It
performs updates after processing each sample or a small
batch of samples. While SGD is straightforward, it can
have slow convergence and exhibit oscillations in high-
dimensional spaces.

• Adam [31] is an adaptive optimization algorithm that
dynamically adjusts the learning rate for each parameter.
It combines the benefits of RMSprop [32] and momentum
methods, utilizing past gradient information to adapt the

learning rate. Adam is efficient and performs well in a
variety of scenarios.

For a more in-depth explanation, please refer to Section
VII-C.

V. IMPLEMENTATION DETAILS

In our research, we employed specific hardware and soft-
ware resources. Our setup consisted of an AMD Ryzen 7
7700X 8-Core processor and a NVIDIA GeForce RTX 4070
with 12GB of VRAM.

For the implementation of our project, we opted for Python
as our primary programming language. We made use of open-
source libraries to perform various computations, which are
detailed below:

• RichDEM [33]: is an open-source library that provides
many utilities for DEM processing. We used it to compute
the Slope and the Aspect.

• Whiteboxtools [25]: is an open-source library that pro-
vides a wide range of geospatial analysis tools and
functions for processing and analyzing geospatial data.
We used it to compute the TPI function.

For data preprocessing and analysis, we utilized Rasterio
[34], GDAL [35], and QGIS [36].

Our preferred deep learning framework is PyTorch [37].

VI. PERFORMANCE MEASURES

The first one is the mean absolute error or MAE. This error
measure is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (7)

where n is the number of data points, y is the actual snow
depth, and ŷi is the predicted snow depth.

The second one is the root-mean-square error or RMSE. It
is commonly used to detect predictions that are sensitive to
extreme errors or outliers. RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (8)

where n is the number of data points, y is the actual snow
depth, and ŷi is the predicted snow depth.

For the sake of clarity, when we mention errors in the
work, we are referring to the mean absolute error. Root-mean-
square error only is presented in our final model for study
comparability.

We also introduce the R2 score, which is a measure of the
goodness of a function fit.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(9)

where n is the number of data points, y represents the truth
value, ŷ is the predicted value, and y is the mean of the truth
values.



TABLE II: Acquisition and Area Overview: Various Locations
(2010-2022). The area is computed as the sum of each grid
cell area, excluding those with a value of nodata.

Data
partition Location Year of

acquisition Area (km²)

Train Davos 2010 122.51
Davos 2012 126.48
Davos 2013 125.71
Davos 2014 108.55
Davos 2015 109.31
Davos 2016 109.54
Davos 2016 109.96
Davos 2016 110.8
Davos 2018 34.47
Davos 2020 161.08
Davos 2021 148.78

Val Laucherenalp 2020 1.14
Laucherenalp 2022 2.26
Saflischpass 2022 4.48
Saflischpass 2022 6.55

Test Davos 2017 369.19
- Total - 1650.81

VII. EXPERIMENTAL RESULTS

For experimentation purposes, we first split the dataset
into training (66,4%), test (28,4%), and validation (4,8%)
covering a total of 1651km² of raw data. In Table II a more
in-depth characterization of the dataset can be found. We
used the Davos zone for both training and testing, while the
Saflishpass and Laucherenalp regions were used for validation.
We decided to split the dataset by location to assess whether
our model is prone to overfitting specifically to the Davos
area or if it demonstrates generalization capabilities. Moreover,
we decided to utilize the largest Davos map only for testing,
allowing us to evaluate our model’s ability to model snow
depth under unfamiliar conditions. Moreover, making predic-
tions over larger geographical regions can mitigate potential
statistical errors that may arise from working with smaller
maps. An example of our test set can be observed in Fig. 6.

It is worth noting that our dataset only comprises a total of
sixteen maps over the span of ten years. As a result, addressing
temporal variability can be challenging when we have a limited
representation of different time periods.

Fig. 6: Test area from our dataset, with the snow depth scale.
The maximum has been set to 3.

A. Far From D

As introduced in Section II-C4, we must determine the
minimum snow direction to generate this new input feature.
To accomplish so, we make use of take advantage of Taylor’s
Theorem, which states that any derivable function can be
approximated by a Taylor polynomial. We define a region
where the minimum might be located, between 150 and 360º,
and fit the polynomial, inferring the minimum with ease. The
average value obtained is of D⃗ = 245± 3.

B. TPI

We conducted a thorough analysis of macro-scale corre-
lations. The findings from this analysis helped us establish
the desirable behavior of an ideal TPI. Since the TPI’s lower
values suggest areas where snow accumulates, it is reasonable
to determine that the snow depth in these regions is greater. An
effective TPI, in relation to snow depth, should demonstrate
a monotonically decreasing relationship. This implies that as
the TPI values increase, the snow depth decreases.

Fig. 7 showcases the observed tendency in the TPI’s behav-
ior, aligning with our defined criteria. To best represent the
data described, we opted to fit the TPI to a sigmoid function
due to its ability to accurately capture this behavior.

Between all the filter sizes analyzed (5, 7, 9, 11, 13, 22, 50),
we opted for the one that exhibited a superior R2 score. Our
analysis revealed that 11 was the optimal value for both TPI
functions.

C. Hyperparameter configuration

We performed a study aimed at identifying the best hyperpa-
rameters for our architecture , using TPI, SCE, DEM, aspect,
and slope as input variables. We observed that augmenting
the depth of the model resulted in improved performance,
although we encountered one limitation during this process.
The inclusion of the max pooling layer, which reduces the size
(width x height) by half at each step, led us to a maximum
value of 7 for an input image of 256× 256.

Fig. 7: Sliced snow depth vs TPI.



TABLE III: Average errors (in meters) for the different opti-
mizers considered, using TPI, SCE, DEM, aspect, and slope
as input variables. Best result is in bold.

Optimizer SGD Adam SGD + Adam
MAE (m) 0.563 0.572 0.540

Subsequently, we explored the impact of varying the width
parameter on the model’s performance. We conducted an in-
depth study, training the model with different channel widths
(5, 7, 10, 12, 15, and 20). To assess the effectiveness of each
width configuration, we evaluated the average error incurred
during these experiments. Surprisingly, we found that a larger
width did not necessarily yield a superior outcome. More
specifically, we identified the width of 12 as the most advanta-
geous choice. This particular width configuration demonstrated
a remarkable 6% reduction in error compared to the second-
best alternative (10).

With respect to the optimizer, we propose a composite one
that combines SGD and Adam. Adam consistently provided
stability while SGD exhibited instability but yielded superior
values. This behavior led us to the idea of utilizing two
optimizers in the same training procedure, SGD in order to
improve the results and Adam to attain a more stable outcome.

For SGD we used a momentum of 0.9, a weight decay of
10−5, and a learning rate of 10−3, while for Adam we used
a learning rate of 10−3.

In Table III we can observe how the combination of SGD
+ Adam is not only stable but yields the most favorable
outcomes resulting in an average error reduction of 2.3cm
when compared to the use of SGD solely.

It is worth mentioning that this study is constantly validated
throughout every experiment. A model with SGD and a model
with SGD+Adam were always validated, observing this trend
in error reduction when fine-tuning with Adam.

D. MAPchete as map generator

In the geospatial field, data is commonly sliced into sequen-
tial tiles that do not overlap. When recreating the complete
map as limit areas between sequential tiles have a discontinuity
in predictions. However, due to the nature of the Mapchete
approach, we obtain tiles that do overlap, and thus we can
follow an optimization procedure to avoid the aforementioned
behavior. We decided to average the predicted tiles over space.
Fig. 8 depicts an example of the map recreation procedure. The
edge of the predicted tiles can be discerned when overlapping,
but MAPchete offers a much more smooth map.

In order to quantify the effect of averaging, we studied how
predictions change in the test area using the best model of
the preceding section. We observe both a reduction in error
−10−3cm and in standard deviation −1cm2, which reflects
how predictions are better and less sparse over space.

E. Feature informativity

We conducted a new experiment to determine which of the
input variables was more informative. Table IV shows the

(a)

(b)

Fig. 8: Map recreation using (a) overlapping and (b) MAPchete
in the area of Saflischpass.

results of an ablation study, which consisted of training and
testing a model leaving out one of the variables. Notice that,
in some cases, we took out two variables due to the correlation
between them: DEM and DEM, and TPI and TPIWGW. This is
pursued to see if eliminating both features could have positive
effects on our model.

The following conclusions can be drawn from the results:
• DEMStat is the feature that performs the worst. One

potential justification behind this statement is that the
linear relationship between altitude and snow depth may
not work as a sufficiently reliable estimator, in contrast
to our initial presumptions. Another potential reason is
that without DEMStat, the system is overfitting to data
from a specific day, given the constraints of our lim-
ited validation dataset. Consequently, when introducing
temporal variability, the outcomes for that particular day
deteriorate. However, these outcomes could likely im-
prove with a more extensive validation dataset spanning
multiple days.

• Notably, aspect emerges as the third most significant



TABLE IV: Average errors (in meters) achieved in the ablation study, using all the variables but the one shown. Best result is
in bold.

Deleted
variable FFD DEMStat TPIWGW TPI

TPI
&

TPIWGW
Slope Aspect SCE DEM

DEM
&

DEMStat
Average

error (m) 0.536 0.528 0.546 0.570 0.561 0.539 0.558 0.560 0.548 0.529

variable, which could imply that the model is non en-
countering the issues we initially anticipated in Section
II-C3.

• TPI is the variable that performs the best. When left out
the model enworsed by 1cm in predictions with respect
to the second variable (SCE). Namely, the best predictors
are TPI, SCE, Aspect, DEM, Slope, FFD, and DEMStat.

F. Iterative Predictor

To determine which variables should be included in our final
dataset, we follow an iterative process. At each step, a model is
trained adding variables one by one. The order of incorporation
is that of the best variables found in the previous experiment.

Table V shows a deep improvement that stabilizes around
0.53m. With only SCE, TPI, aspect, and DEM the error is
0.532m on average, which is a 0.56% worse than the best
model. Although an improvement is noted, we would like
to highlight that if computational efficiency is pursued these
variables could be sufficient for the purpose of snow depth
predicting. In the following, we refer to this configuration as
the Efficient Set.

TABLE V: Average errors (in meters) achieved with the
iterative strategy, where the last variable added is the one
shown. Best result is in bold.

Added
variable TPI SCE Aspect DEM Slope FFD DEMStat

Average
error (m) 0.607 0.576 0.548 0.532 0.531 0.530 0.529

G. Aspect projection

Aspect is a non-continuous function with a step between
0 and 360º. This could represent a problem in the training
procedure, as it is an extra characteristic the model should
learn. Although this problem can be diminished if enough
data is fed to the model, a common alternative found in the
literature is to decompose it into sine and cosine in order to
avoid any discontinuity. This procedure augments the number
of input features and thus increases the computational time.

In this research, we train a model using the projections of
the aforementioned functions instead of the aspect. We used
the variables of the Efficient Set for this experiment.

We observe an average error of 0.533m, which is slightly
higher than the ones obtained in the previous experiment.
Therefore, we are able to conclude that for this dataset of 5333
images, we do not need the decomposition as no improvement
is observed.

H. Another temporal dependency

As detailed in Section II-C7, we here introduce temporal
variability into our model by creating three new features. We
here test the last two of them: Voronoi and ProbStat.

We proceed to train two models using the information
gathered from the preceding sections, specifically utilizing the
Efficient Set. When incorporating Voronoi, we observe an error
of 0.527m; whereas with ProbStat, the error improves slightly
to 0.525m. This results in a reduction of error by 0.93% and
1.3%, respectively, compared to the model trained solely with
the Efficient Set. To analyze in detail the impact of Probstat on
our test set, we substitute this feature with a mask with values
of 0, 1, and 0.5, and then assess how predictions deviate from
the labeled dataset.

Fig. 9 illustrates the behavior of ProbStat. As expected,
higher ProbStat values lead to higher predictions of snow
depth. This characteristic can be valuable when there are
enough monitoring stations in the area, as it adjusts snow
predictions.

After confirming that ProbStat behaves as anticipated, we
also point out the lack of temporal representation in our dataset
as the main limitation, as discussed in Section VII-E. This
scenario may lead to a situation of overfitting, hindering our
model’s ability to generalize.

It is worth mentioning that the unscaled predictions should
form a linear relationship, with each prediction value matching
the labeled one. However, as shown in Fig. 9, for higher
depth values, the predictions tend to underestimate. In the next
section, we take a deeper look into the error distribution.

We select the model trained with the Efficient Set and

Fig. 9: Predictions in different masking configurations for
ProbStat. Unscaled refers to the original feature.



(a) (b)

Fig. 10: Error distribution with respect to snow depth (HS): (a) absolute error and (b) error ratio.

Probstat as our best model, achieving an MAE of 0.525m and
an RSME of 0.634m.

I. Error distribution

By analyzing the error distribution, we gain insights into
the accuracy and reliability of our predictive model. Such
insights are pivotal in fine-tuning the model’s parameters and
identifying potential biases.

Fig. 10 shows the absolute error and the error ratio, defined
as Absolute error/HS. The lowest error ratio is found at a
snow depth of 2.52m. In terms of absolute error, the minimum
occurs at a snow depth of 1.72m, with an MAE of 0.480m,
which is 8.5% less than the average error. This information
could prove valuable in an industrial product context, where
predictions could be accompanied by a confidence interval
based on the error distribution.

When we examine the error ratio more closely, it becomes
apparent that our model experiences a significant increase
in the error ratio for predictions below 0.5m. An interesting
observation about the dataset is that snow depths under 0.5m
are exclusively found in a specific region. This region pos-
sesses a distinctive characteristic: close to zero snow depth
and predictions ranging from 0.5 to 1 meter. In our training
set, only 14% of the samples have snow depths under 50cm.
This underscores the significance of representing features
accurately, specifically the limited representation of low snow
depth in this case. On the other hand, the absolute error reveals
that predictions for greater snow depths tend to be less precise
compared to those for shallower depths. As mentioned in the
previous section, there is a tendency for underprediction in
higher snow depths. This may indicate that not only is more
data needed in lower snow depths, but also in higher ones. In
our training set, only 9.7% of the samples correspond to depths
over 3m and only 3.0% over 4m. Both effects together suggest
that an effort should be put into creating a more balanced
dataset in terms of snow depths.

VIII. CONCLUSIONS

Our research addressed the challenge of generating accurate
snow depth maps utilizing geospatial and satellite imagery. By
employing the UNet architecture in a regressor mode, we have
demonstrated its effectiveness in handling complex spatial data
and producing high-quality results. Resolution also plays an
important role in snow depth mapping, a higher resolution
leads to more complex terrain and thus more complex snow
accumulation patterns. To our extent, this is the first model
to map accurately at only 5m resolution. Furthermore, recog-
nizing the importance of temporal dependencies in modeling
snow, we introduced three novel features: DEMStat, Voronoi,
and ProbStat. Among them, the Probstat model achieved the
best performance with an MAE of 0.525m error and an RSME
of 0.634m.

We would like to highlight two contributions that could like-
wise enhance outcomes in other studies. Firstly, we introduce
MAPchete, the novel data augmentation and preprocessing
method. Secondly, the combination of two popular optimizers,
SGD and Adam, have proven to be a powerful tool to enhance
outcomes.

Our work contributes to the field of predictive snow depth
modeling laying the groundwork for refining these models and
leveraging novel features.

In this sense, four major areas for future investigation
arise: modifying the architecture, working at other spatial
resolutions, adding more input features, and gathering more
data.

The first logical step involves exploring alternative archi-
tectural variations that have demonstrated success in related
fields. More complex architectures could lead to more fine-
grained predictions in regions with complex snow accumula-
tion patterns.

Furthermore, extending the spatial resolution at which pre-
dictions are made represents a valuable strategy for enhancing



the model’s performance. While the current study employed a
resolution of 5m, future research could evaluate the effective-
ness of the UNet architecture at different resolutions.

Our current approach for snow depth prediction primarily
relies on the UNet architecture and associated spatial in-
formation. Future investigations could incorporate additional
features beyond spatial data, such as meteorological variables,
historical snowfall patterns, or different terrain characteristics.

We detected little representation of data at shallow and deep
snow depths. This could be approached two ways, whether
gathering more data under those conditions or preprocessing
the dataset having a more even distribution in terms of snow
depths.
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