-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathbuild_model_with_outliers.py
231 lines (205 loc) · 10.1 KB
/
build_model_with_outliers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.python.ops import variable_scope
from tensorflow.python.framework import dtypes
import copy
## Parameters
learning_rate = 0.01
lambda_l2_reg = 0.003
## Network Parameters
# length of input signals
input_seq_len = 15
# length of output signals
output_seq_len = 20
# size of LSTM Cell
hidden_dim = 64
# num of input signals
input_dim = 1
# num of output signals
output_dim = 1
# num of stacked lstm layers
num_stacked_layers = 2
# gradient clipping - to avoid gradient exploding
GRADIENT_CLIPPING = 2.5
def build_graph(feed_previous = False):
tf.reset_default_graph()
global_step = tf.Variable(
initial_value=0,
name="global_step",
trainable=False,
collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES])
weights = {
'out': tf.get_variable('Weights_out', \
shape = [hidden_dim, output_dim], \
dtype = tf.float32, \
initializer = tf.contrib.layers.xavier_initializer()),
'out_dec_inp': tf.get_variable('Weights_out_dec', \
shape = [output_dim+1, output_dim], \
dtype = tf.float32, \
initializer = tf.contrib.layers.xavier_initializer()),
}
biases = {
'out': tf.get_variable('Biases_out', \
shape = [output_dim], \
dtype = tf.float32, \
initializer = tf.zeros_initializer()),
'out_dec_inp': tf.get_variable('Biases_out_dec', \
shape = [output_dim], \
dtype = tf.float32, \
initializer = tf.zeros_initializer()),
}
with tf.variable_scope('Seq2seq'):
# Encoder: inputs
enc_inp = [
tf.placeholder(tf.float32, shape=(None, input_dim), name="inp_{}".format(t))
for t in range(input_seq_len)
]
# Decoder: target outputs
target_seq = [
tf.placeholder(tf.float32, shape=(None, output_dim), name="y".format(t))
for t in range(output_seq_len)
]
# Extreme events bool vectors for input seq
#input_seq_extremes_bool = [
# tf.placeholder(tf.float32, shape=(None, 1), name="event_bool".format(t))
# for t in range(input_seq_len)
#]
# Extreme events bool vectors for output seq
output_seq_extremes_bool = [
tf.placeholder(tf.float32, shape=(None, 1), name="event_bool".format(t))
for t in range(output_seq_len)
]
# Give a "GO" token to the decoder.
# If dec_inp are fed into decoder as inputs, this is 'guided' training; otherwise only the
# first element will be fed as decoder input which is then 'un-guided'
dec_inp = [ tf.zeros_like(target_seq[0], dtype=tf.float32, name="GO") ] + target_seq[:-1]
dec_inp = [ tf.concat([b, d], 1) for b, d in zip(output_seq_extremes_bool, dec_inp) ]
#enc_inp = [ tf.concat([b, e], 1) for b, e in zip(input_seq_extremes_bool, enc_inp_raw) ]
with tf.variable_scope('LSTMCell'):
cells = []
for i in range(num_stacked_layers):
with tf.variable_scope('RNN_{}'.format(i)):
cells.append(tf.contrib.rnn.LSTMCell(hidden_dim))
cell = tf.contrib.rnn.MultiRNNCell(cells)
def _rnn_decoder(decoder_inputs,
initial_state,
cell,
loop_function=None,
scope=None):
"""RNN decoder for the sequence-to-sequence model.
Args:
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
initial_state: 2D Tensor with shape [batch_size x cell.state_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to the i-th output
in order to generate the i+1-st input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol). This can be used for decoding,
but also for training to emulate http://arxiv.org/abs/1506.03099.
Signature -- loop_function(prev, i) = next
* prev is a 2D Tensor of shape [batch_size x output_size],
* i is an integer, the step number (when advanced control is needed),
* next is a 2D Tensor of shape [batch_size x input_size].
scope: VariableScope for the created subgraph; defaults to "rnn_decoder".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing generated outputs.
state: The state of each cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
(Note that in some cases, like basic RNN cell or GRU cell, outputs and
states can be the same. They are different for LSTM cells though.)
"""
with variable_scope.variable_scope(scope or "rnn_decoder"):
state = initial_state
outputs = []
prev = None
for i, inp in enumerate(decoder_inputs):
if loop_function is not None and prev is not None:
with variable_scope.variable_scope("loop_function", reuse=True):
inp = loop_function(prev, i)
else:
inp = tf.matmul(inp, weights['out_dec_inp']) + biases['out_dec_inp']
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
output, state = cell(inp, state)
outputs.append(output)
if loop_function is not None:
prev = output
return outputs, state
def _basic_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
feed_previous,
dtype=dtypes.float32,
scope=None):
"""Basic RNN sequence-to-sequence model.
This model first runs an RNN to encode encoder_inputs into a state vector,
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell type, but don't share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
feed_previous: Boolean; if True, only the first of decoder_inputs will be
used (the "GO" symbol), all other inputs will be generated by the previous
decoder output using _loop_function below. If False, decoder_inputs are used
as given (the standard decoder case).
dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
enc_cell = copy.deepcopy(cell)
_, enc_state = rnn.static_rnn(enc_cell, encoder_inputs, dtype=dtype)
if feed_previous:
return _rnn_decoder(decoder_inputs, enc_state, cell, _loop_function)
else:
return _rnn_decoder(decoder_inputs, enc_state, cell)
def _loop_function(prev, i):
'''Naive implementation of loop function for _rnn_decoder. Transform prev from
dimension [batch_size x hidden_dim] to [batch_size x output_dim], which will be
used as decoder input of next time step '''
#return tf.matmul(prev, weights['out']) + biases['out']
temp_out = tf.matmul(prev, weights['out']) + biases['out']
temp_concat = tf.concat([output_seq_extremes_bool[i], temp_out], 1)
return tf.matmul(temp_concat, weights['out_dec_inp']) + biases['out_dec_inp']
dec_outputs, dec_memory = _basic_rnn_seq2seq(
enc_inp,
dec_inp,
cell,
feed_previous = feed_previous
)
reshaped_outputs = [tf.matmul(i, weights['out']) + biases['out'] for i in dec_outputs]
# Training loss and optimizer
with tf.variable_scope('Loss'):
# L2 loss
output_loss = 0
for _y, _Y in zip(reshaped_outputs, target_seq):
output_loss += tf.reduce_mean(tf.pow(_y - _Y, 2))
# L2 regularization for weights and biases
reg_loss = 0
for tf_var in tf.trainable_variables():
if 'Biases_' in tf_var.name or 'Weights_' in tf_var.name:
reg_loss += tf.reduce_mean(tf.nn.l2_loss(tf_var))
loss = output_loss + lambda_l2_reg * reg_loss
with tf.variable_scope('Optimizer'):
optimizer = tf.contrib.layers.optimize_loss(
loss=loss,
learning_rate=learning_rate,
global_step=global_step,
optimizer='Adam',
clip_gradients=GRADIENT_CLIPPING)
saver = tf.train.Saver
return dict(
enc_inp = enc_inp,
target_seq = target_seq,
train_op = optimizer,
loss=loss,
saver = saver,
reshaped_outputs = reshaped_outputs,
output_seq_extremes_bool = output_seq_extremes_bool,
)