-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurrent_projects.html
150 lines (133 loc) · 7.88 KB
/
current_projects.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<title>Current projects</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >
<link rel="shortcut icon" href="img/favicon.png"/>
<link href="css/stylesheet2.css" rel="stylesheet" type="text/css">
<body>
<div id='container' class='container'>
<div id='header' class='header' >
<div style='position:relative;' >
<img id='header_image' style='float:right;' src='img/headers/Canada Goose.jpg' />
<div id='header_image_caption' style='color:white' class='header_image_caption' >
Canada Goose
</div>
</div>
</div>
<div id='linksidebar' class='linksidebar' >
<div class='linksidebar_mainlink' >
<a class='linksidebar_link' href='about_me.html'>About me</a>
</div>
<div class='linksidebar_mainlink_u' >
<a class='linksidebar_link_u' href='current_projects.html'>Current projects</a>
</div>
<div class='linksidebar_sublink' >
<a class='linksidebar_link' href='current_projects/suction.html'>Suction feeding</a>
</div>
<div class='linksidebar_sublink' >
<a class='linksidebar_link' href='current_projects/linkages.html'>Biomechanical linkages</a>
</div>
<div class='linksidebar_sublink' >
<a class='linksidebar_link' href='current_projects/waterfowl.html'>Waterfowl feeding</a>
</div>
<div class='linksidebar_mainlink' >
<a class='linksidebar_link' href='software.html'>Software</a>
</div>
<div class='linksidebar_mainlink' >
<a class='linksidebar_link' href='tutorials/visualization3d.html'>Tutorials</a>
</div>
<div class='linksidebar_mainlink' >
<a class='linksidebar_link' href='contact.html'>Contact</a>
</div>
<div class='linksidebar_mainlink' >
<a class='linksidebar_link' href='cv.html'>CV</a>
</div>
</div>
<div id='maincontent' class='maincontent' >
<div id='pagetrail' class='pagetrail' ><a href="about_me.html">home</a> > current projects</div>
<div class='maincontentfill'>
<h1>Current Projects</h1>
<h2><a href='current_projects/suction.html' >Suction feeding in fishes and its influence on body diversification</a></h2>
<p>
<div class='p_image_right_div' style="width:250px;">
<div><img width='250px' src='img/suction_postcranial_transmission.jpg' /></div>
<div class='p_image_caption' style='text-align:right;' >
Cranial and axial muscles applying force through the cranial linkage mechanism
</div>
</div>
Suction feeding is the oldest and most widespread feeding strategy among jawed vertebrates.
Fish suction feed by rapidly expanding the buccal
cavity to create a negative pressure gradient, which drives the flow of water and
nearby prey items into the mouth.
It has recently been shown that 95% of the power required for suction feeding in largemouth
bass is generated by the axial muscles that span most of the body and also function in swimming
(<a href='https://dx.doi.org/10.1093/icb/icv034' target='_blank' >Camp and Brainerd 2014</a>;
<a href='https://dx.doi.org/10.1073/pnas.1508055112' target='_blank' >Camp et al. 2015</a>).
These muscles pull on the back of the head and cause the mouth to expand
through a three-dimensional linkage of mobile cranial bones.
Whether locomotor muscles provide most of the power in other suction-feeding
ray-finned fishes remains unknown.
Additionally, if largemouth bass are representative of other suction feeding fishes,
how motor coordination between cranial and postcranial functional systems has
influenced the diversification of body forms among fishes also remains unknown.
<a href='current_projects/suction.html' >Read more...</a>
</p>
<h2><a href='current_projects/linkages.html' >Modeling musculoskeletal systems as mechanical linkages</a></h2>
<p>
<div class='p_image_right_div' style="width:250px;">
<div><img width='250px' src='img/owl_linkage_plot.jpg' /></div>
<div class='p_image_caption' style='text-align:right;' >
The owl cranial bones modeled as a 3D linkage (modified from
<a href='https://www.researchgate.net/publication/307557370_Linkage_mechanisms_in_the_vertebrate_skull_Structure_and_function_of_three-dimensional_parallel_transmission_systems' target='_blank' >Olsen and Westneat 2016</a>)
</div>
</div>
Mechanical linkages, interconnected chains of rigid links, provide a useful
model for the motion and force transmission of musculoskeletal systems,
particularly for those systems in which the skeletal elements interconnect
to form closed chains (or loops). Mechanical linkages have been
used as models for a diversity of musculoskeletal systems, including the skulls of
fishes (<a href='https://dx.doi.org/10.1002/jmor.1052050304' target='_blank' >Westneat 1990</a>)
, some lizards (<a href='https://www.researchgate.net/publication/251216050_Cranial_Kinesis_in_Lepidosaurs_Skulls_in_Motion' target='_blank' >Metzger 2002</a>),
and birds (<a href='https://dx.doi.org/10.1002/jmor.1052130206' target='_blank' >Van Gennip and Berkhoudt 1992</a>),
the rib cages of birds (<a href='https://dx.doi.org/10.1002/jez.501' target='_blank' >Claessens 2009</a>),
and the striking appendages of mantis shrimps (<a href='https://dx.doi.org/10.1242/jeb.006486' target='_blank' >Patek et al. 2007</a>).
However, previous applications of linkage modeling have predominately focused
on 2D models and linkages in which all the links
interconnect as a single chain, excluding a number of diverse musculoskeletal
characterized by 3D motions and elements that interconnect
to form multiple, nested chains (referred to in engineering as multiloop or
parallel linkages).
<a href='current_projects/linkages.html' >Read more...</a>
</p>
<h2><a href='current_projects/waterfowl.html' >Reconstructing the evolution of feeding in waterfowl</a></h2>
<p>
<div class='p_image_right_div' style="width:250px;">
<div><img width='250px' src='img/waterfowl_beak_morphospace.jpg' /></div>
<div class='p_image_caption' style='text-align:right;' >
A waterfowl beak morphospace
</div>
</div>
Bird beaks are frequently invoked as a classic example of adaptive evolution to feeding ecology.
However, most studies of feeding evolution in birds have focused
on Passerines, which represent only half of all avian diversity.
And, with the exception of Darwin's finches, there are few bird groups in which
we have an integrated understanding of how the feeding system has evolved.
Waterfowl (Anseriformes) are a diverse and globally distributed order of birds
that includes ducks, geese, swans, and mergansers.
Owing to their economic and agricultural importance,
more is known about the diets of waterfowl than perhaps any other bird order.
Waterfowl also exhibit a diversity of beak shapes and feeding behaviors.
For these reasons waterfowl are an ideal model system for understanding the
evolution of an avian feeding system and for testing classic hypotheses on the link between
beak shape and feeding ecology.
<a href='current_projects/waterfowl.html' >Read more...</a>
</p>
</div>
</div>
<div id='footer' class='footer' >
<div style='float:left;' >© 2019 Aaron Olsen. All rights reserved.<br><br></div>
<div style='float:right;' >Design and photographs by Aaron Olsen.</div>
<div style='float:left;background-color:;' >The material on this site is based upon work supported by the National Science Foundation (DGE-1144082, DGE-0903637, DBI-1612230). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.</div>
</div>
</div>
</body>
<script src="js/sharedfunctions2.js" type="text/javascript" ></script>