-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
42 lines (30 loc) · 1.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
def prepare_data(datapath):
data = pd.read_csv(datapath)
parent_path = os.path.dirname(datapath)
with open(f"{parent_path}/inject_time.txt", 'r') as file:
inject_time = file.read().strip()
try:
inject_time = int(inject_time)
except ValueError:
print("The inject.txt does not contain a valid integer.")
inject_time = int(inject_time - data['time'][0])
data = data.ffill()
data = data.fillna(0)
columns = data.columns[data.nunique() > 1]
columns = [x for x in columns if "time" not in x]
data = data[columns]
x = data.values
min_max_scaler = MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
data_scaled = pd.DataFrame(x_scaled, columns=data.columns, index=data.index)
return data, data_scaled, inject_time
def to_services(ranks):
_service_ranks = [r.split("_")[0] for r in ranks]
service_ranks = []
for s in _service_ranks:
if s not in service_ranks:
service_ranks.append(s)
return service_ranks