-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTLC_MobileNetV2.py
620 lines (550 loc) · 21.1 KB
/
TLC_MobileNetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# This is the code to implement VLC on MobileNet-V2 model
import torch
import torchvision
import torchvision.transforms as transforms
from torch import optim
import numpy as np
from tqdm import tqdm
import random
import wandb
import os
import re
import pandas as pd
from torch.utils.data import DataLoader, Subset
from torchvision.datasets import ImageFolder
from PIL import ImageFile
import argparse
# os.environ["CUDA_VISIBLE_DEVICES"]="1"
device = torch.device('cuda:0') # Device configuration
def cal_Pbn_entropy(model,bn_list):
# Function to get BN layer parameters
cdf_0 = {}
beta = {}
for name, module in model.named_modules():
if name in bn_list:
Gamma = torch.abs(module.weight.data)
Beta = module.bias.data
normal_part = 0.5 * (1 + torch.erf((0 - Beta) / (Gamma * np.sqrt(2))))
zero_gamma_condition = Gamma == 0
cdf_0[name]= torch.where(zero_gamma_condition, (0 >= Beta).float(), normal_part)
beta[name] = Beta
return (cdf_0, beta)
def train(model, epoch, optimizer,train_loader):
print('\nEpoch : %d' % epoch)
model.train()
running_loss = 0.0
correct = 0
total = 0
loss_fn = torch.nn.CrossEntropyLoss()
for data in tqdm(train_loader):
inputs, labels = data[0].to(device), data[1].to(device)
outputs = model(inputs)
loss = loss_fn(outputs, labels)
total_loss = loss
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
running_loss += total_loss.item()
train_loss = running_loss / len(train_loader)
accu = (100.0 * correct / total)
print('Train Loss: %.3f | Accuracy: %.3f' % (train_loss, accu))
return accu, train_loss
def val(model,val_loader):
model.eval()
running_loss=0
correct=0
total=0
loss_fn=torch.nn.CrossEntropyLoss()
with torch.no_grad():
for data in tqdm(val_loader):
images,labels=data[0].to(device),data[1].to(device)
outputs=model(images)
loss= loss_fn(outputs,labels)
running_loss+=loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_loss=running_loss/len(val_loader)
accu=100.*correct/total
print('Val Loss: %.3f | Accuracy: %.3f'%(test_loss,accu))
return(accu, test_loss)
def test(model,test_loader):
model.eval()
running_loss=0
correct=0
total=0
loss_fn=torch.nn.CrossEntropyLoss()
with torch.no_grad():
for data in tqdm(test_loader):
images,labels=data[0].to(device),data[1].to(device)
outputs=model(images)
loss= loss_fn(outputs,labels)
running_loss+=loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_loss=running_loss/len(test_loader)
accu=100.*correct/total
print('Test Loss: %.3f | Accuracy: %.3f'%(test_loss,accu))
return(accu, test_loss)
def testVal(model,val_loader):
model.eval()
running_loss=0
correct=0
total=0
loss_fn=torch.nn.CrossEntropyLoss()
with torch.no_grad():
for data in tqdm(val_loader):
images,labels=data[0].to(device),data[1].to(device)
outputs=model(images)
loss= loss_fn(outputs,labels)
running_loss+=loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
break
test_loss=running_loss
accu=100.*correct/total
print('testVal_loss Loss: %.3f | Accuracy: %.3f'%(test_loss,accu))
return(accu, test_loss)
def replace_relu6_inplace(model):
for name, module in model.named_children():
if type(module) == torch.nn.ReLU6:
setattr(model, name, torch.nn.ReLU6(inplace=False))
else:
replace_relu6_inplace(module)
def main():
parser = argparse.ArgumentParser(description='TLC')
parser.add_argument('--dataset', default='CIFAR-10', help='dataset')
parser.add_argument('--DATA_DIR', default='~/data/cifar-10/', help='data_root')
parser.add_argument('--seed', type=int, default=43, help='seed')
args = parser.parse_args()
# set seeds
torch.manual_seed(args.seed)
os.environ["CUBLAS_WORKSPACE_CONFIG"]=":16:8"
random.seed(args.seed)
np.random.seed(args.seed)
torch.use_deterministic_algorithms(True)
# dataset
if args.dataset == 'CIFAR-10':
epochs = 160
learning_rate = 0.1
momentum = 0.9
gamma=0.1
weight_decay = 1e-4
milestones=[80,120]
batch_size = 128
size_train_set = 0.9
transform = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32,4),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
train_dataset = torchvision.datasets.CIFAR10(root=args.DATA_DIR,
train=True,
transform=transform,
download=True)
train_size = int(size_train_set * len(train_dataset))
val_size = len(train_dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(train_dataset, [train_size, val_size])
test_dataset = torchvision.datasets.CIFAR10(root=args.DATA_DIR,
train=False,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]),
download=True)
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers = 8)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers = 8)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers = 8)
num_classes = 10
elif args.dataset == 'Tiny-ImageNet-200':
epochs = 160
learning_rate = 0.1
momentum = 0.9
gamma=0.1
weight_decay = 1e-4
milestones=[80,120]
batch_size = 128
DATA_DIR = args.DATA_DIR # Original images come in shapes of [3,64,64]
TRAIN_DIR = os.path.join(DATA_DIR, 'train')
VALID_DIR = os.path.join(DATA_DIR, 'val')
TEST_DIR = os.path.join(DATA_DIR, 'test')
# Define transformation sequence for image pre-processing
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
train_dataset = torchvision.datasets.ImageFolder(TRAIN_DIR, transform=transform_train)
train_loader = DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=8)
val_dataset = torchvision.datasets.ImageFolder(VALID_DIR, transform=transform_val)
val_loader = DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=8)
test_dataset = torchvision.datasets.ImageFolder(TEST_DIR, transform=transform_test)
test_loader = DataLoader(test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=8)
num_classes = 200
elif args.dataset == 'ImageNet-1000':
epochs = 90
learning_rate = 0.1
momentum = 0.9
gamma=0.1
weight_decay = 1e-4
milestones=[30,60]
batch_size = 128
class ImageTransform(dict):
def __init__(self):
super().__init__(
{"train": self.build_train_transform(), "val": self.build_val_transform()}
)
def build_train_transform(self):
t = transforms.Compose(
[
transforms.RandomResizedCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
return t
def build_val_transform(self):
t = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
return t
dataset = {
"train_val": torchvision.datasets.ImageFolder(root=args.DATA_DIR+'/train/', transform=ImageTransform()["train"]),
"test": torchvision.datasets.ImageFolder(root=args.DATA_DIR+'/val/',transform=ImageTransform()["val"]),
}
indices = np.arange(len(dataset["train_val"]))
np.random.shuffle(indices)
split_idx = int(0.95 * len(dataset["train_val"]))
train_indices, val_indices = indices[:split_idx], indices[split_idx:]
train_dataset = Subset(dataset["train_val"], train_indices)
val_dataset = Subset(dataset["train_val"], val_indices)
train_loader = DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4)
val_loader = DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4)
test_loader = DataLoader(dataset["test"],
batch_size=batch_size,
shuffle=False,
num_workers=4)
num_classes=1000
elif args.dataset == 'PACS':
epochs = 30
learning_rate = 0.001
momentum = 0.9
gamma=0.1
weight_decay = 5e-4
milestones=[24]
batch_size =16
data_path = args.DATA_DIR
ImageFile.LOAD_TRUNCATED_IMAGES = True
transform = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)), # Randomly cropping the images
transforms.RandomHorizontalFlip(), # Randomly apply horizontal flipping
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4), # Random color jittering
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
datasets = [ImageFolder(os.path.join(data_path, domain), transform=transform)
for domain in ['cartoon', 'art_painting', 'photo', 'sketch']]
dataset = torch.utils.data.ConcatDataset(datasets)
indices = np.arange(len(dataset))
np.random.shuffle(indices)
train_split = int(0.8 * len(dataset)) # 80% for training
val_test_split = int(0.9 * len(dataset)) # 10% for validation, 10% for testing
train_indices = indices[:train_split]
val_indices = indices[train_split:val_test_split]
test_indices = indices[val_test_split:]
train_dataset = Subset(dataset, train_indices)
val_dataset = Subset(dataset, val_indices)
test_dataset = Subset(dataset, test_indices)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
num_classes = len(dataset.datasets[0].classes)
elif args.dataset == 'VLCS':
epochs = 30
learning_rate = 0.001
momentum = 0.9
gamma=0.1
weight_decay = 5e-4
milestones=[24]
batch_size =16
data_path = args.DATA_DIR
ImageFile.LOAD_TRUNCATED_IMAGES = True
transform = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)), # Randomly cropping the images
transforms.RandomHorizontalFlip(), # Randomly apply horizontal flipping
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4), # Random color jittering
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
datasets = [ImageFolder(os.path.join(data_path, domain), transform=transform)
for domain in ['VOC2007', 'SUN09', 'LabelMe', 'Caltech101']]
dataset = torch.utils.data.ConcatDataset(datasets)
indices = np.arange(len(dataset))
np.random.shuffle(indices)
train_split = int(0.8 * len(dataset)) # 80% for training
val_test_split = int(0.9 * len(dataset)) # 10% for validation, 10% for testing
train_indices = indices[:train_split]
val_indices = indices[train_split:val_test_split]
test_indices = indices[val_test_split:]
train_dataset = Subset(dataset, train_indices)
val_dataset = Subset(dataset, val_indices)
test_dataset = Subset(dataset, test_indices)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
num_classes = len(dataset.datasets[0].classes)
save_path = './' +'MobileNet/'+args.dataset+'/'
if not os.path.exists(save_path+'/model_save/'):
os.makedirs(save_path+'/model_save/')
# model
if args.dataset == 'CIFAR-10':
from cifar10_models.mobilenetv2 import MobileNetV2
model = MobileNetV2()
else:
model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
model.classifier[1] = torch.nn.Linear(in_features=model.classifier[1].in_features, out_features=num_classes)
replace_relu6_inplace(model)
model.to(device)
bn_list=[]
for name, module in model.named_modules():
if isinstance(module, torch.nn.BatchNorm2d) and 'downsample' not in name:
bn_list.append(name)
val_acc, val_loss = val(model, val_loader)
test_acc, test_loss = test(model,test_loader)
data_columns = ['Lay.rem'] + ["train_acc"] + ["val_acc"] + ["test_acc"]
accumulated_data = pd.DataFrame(columns=data_columns)
for it in range(0, 20):
print('it', it)
if it > 0: # the first training is vanilla training
cdf_0, beta = cal_Pbn_entropy(model, bn_list)
temp_layer = []
layers_to_replace = []
layers_to_prune=[]
for key in cdf_0.keys():
temp_layer.append(key)
beta_conv = {}
previous_conv_name = None
for name, module in model.named_modules():
if type(module) == torch.nn.Conv2d or type(module) == torch.nn.Linear:
previous_conv_name = name
conv_layer = module
elif name in temp_layer:
beta_conv[previous_conv_name] = beta[name]
bn_layer = module
loss_wo_layer = {}
acc_wo_layer = {}
loss_gap={}
acc_gap={}
testVal_acc, testVal_loss = testVal(model,val_loader)
loss_wo_layer['no']=testVal_loss
acc_wo_layer['no'] = testVal_acc
# rank layers by importance
for name_conv, module in model.named_modules():
if name_conv in beta_conv.keys() :
print(name_conv)
bn_close = []
layers_to_replace = []
model_copy = torch.load(model_path).to(device)
previous_conv = False
Previous_bn = False
for name, module in model_copy.named_modules():
if name == name_conv:
previous_conv_name = name
previous_conv = True
elif name in bn_list and previous_conv == True:
bn_close.append(name)
previous_conv = False
Previous_bn = True
elif type(module) == torch.nn.ReLU6 and Previous_bn == True:
layers_to_replace.append(name)
Previous_bn = False
for name, module in model_copy.named_modules():
layer_mask = []
if name == name_conv:
for i in range(beta_conv[name_conv].size()[0]):
if beta_conv[name_conv][i] > 0 :
custom_mask = torch.ones(module.weight.data[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
else:
custom_mask = torch.zeros(module.weight[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
layer_mask = torch.Tensor(layer_mask).to(device)
torch.nn.utils.prune.custom_from_mask(module, name="weight", mask=layer_mask)
for name, module in model_copy.named_modules():
if name in bn_close:
for i in range(beta[name].size()[0]):
if beta[name][i] < 0 :
module.weight.data[i] = 0
module.bias.data[i] = 0
for name in layers_to_replace:
change_name= re.sub(r'\.(\d+)', r'[\1]', name)
exec(f'model_copy.{change_name} = nn.Identity()')
testVal_acc, testVal_loss = testVal(model_copy,val_loader)
loss_wo_layer[name_conv]=testVal_loss
acc_wo_layer[name_conv]=testVal_acc
loss_gap[name_conv] = testVal_loss - loss_wo_layer['no']
acc_gap[name_conv] = acc_wo_layer['no'] - testVal_acc
sorted_loss_gap = dict(sorted(loss_gap.items(), key=lambda item: item[1]))
# attempt remove multiple layers at once
layers_to_prune = []
if min(sorted_loss_gap.values()) < 0:
for num_combine in range(2,len(loss_gap)):
combine_remove_layer = [key for key, value in sorted(sorted_loss_gap.items(), key=lambda item: item[1])][:num_combine]
print('remove layers',combine_remove_layer)
model_com_rem = torch.load(model_path).to(device)
bn_close = []
layers_to_replace = []
previous_conv = False
Previous_bn = False
for name, module in model_com_rem.named_modules():
if name in combine_remove_layer :
previous_conv_name = name
previous_conv = True
layer_mask = []
for i in range(beta_conv[name].size()[0]):
if beta_conv[name][i] > 0 :
custom_mask = torch.ones(module.weight.data[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
else:
custom_mask = torch.zeros(module.weight[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
layer_mask = torch.Tensor(layer_mask).to(device)
torch.nn.utils.prune.custom_from_mask(module, name="weight", mask=layer_mask)
elif name in bn_list and previous_conv == True:
bn_close.append(name)
previous_conv = False
Previous_bn = True
elif type(module) == torch.nn.ReLU6 and Previous_bn == True:
layers_to_replace.append(name)
Previous_bn = False
for name, module in model_com_rem.named_modules():
if name in bn_close:
for i in range(beta[name].size()[0]):
if beta[name][i] < 0 :
module.weight.data[i] = 0
module.bias.data[i] = 0
for name in layers_to_replace:
change_name= re.sub(r'\.(\d+)', r'[\1]', name)
exec(f'model_com_rem.{change_name} = nn.Identity()')
testVal_acc, testVal_loss = testVal(model_com_rem,val_loader)
if testVal_loss - loss_wo_layer['no'] > 0:
layers_to_prune = combine_remove_layer
break
if not layers_to_prune and loss_gap:
min_key = min(loss_gap, key=loss_gap.get)
layers_to_prune.append(min_key)
# Permanently removing layers from a model
model = torch.load(model_path).to(device)
bn_close = []
layers_to_replace = []
previous_conv = False
Previous_bn = False
for name, module in model.named_modules():
if name in layers_to_prune :
previous_conv_name = name
previous_conv = True
layer_mask = []
for i in range(beta_conv[name].size()[0]):
if beta_conv[name][i] > 0 :
custom_mask = torch.ones(module.weight.data[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
else:
custom_mask = torch.zeros(module.weight[i].size()).cpu().numpy()
layer_mask.append(custom_mask)
layer_mask = torch.Tensor(layer_mask).to(device)
torch.nn.utils.prune.custom_from_mask(module, name="weight", mask=layer_mask)
elif name in bn_list and previous_conv == True:
bn_close.append(name)
previous_conv = False
Previous_bn = True
elif type(module) == torch.nn.ReLU6 and Previous_bn == True:
layers_to_replace.append(name)
Previous_bn = False
for name, module in model.named_modules():
if name in bn_close:
bn_list.remove(name)
for i in range(beta[name].size()[0]):
if beta[name][i] < 0 :
module.weight.data[i] = 0
module.bias.data[i] = 0
for name in layers_to_replace:
change_name= re.sub(r'\.(\d+)', r'[\1]', name)
exec(f'model.{change_name} = nn.Identity()')
# number of Identity layers
Iden_num = 0
Iden_list = []
for name, module in model.named_modules():
if type(module) == torch.nn.Identity:
Iden_num +=1
Iden_list.append(name)
name_of_run = "it_"+str(it) + '_Iden_' + str(Iden_num)
name_model = name_of_run
final_val_acc = 0
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, weight_decay=weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=gamma)
# training
for epoch in range(1,epochs+1):
train_acc, train_loss = train(model, epoch, optimizer,train_loader)
val_acc, val_loss = val(model, val_loader)
test_acc, test_loss = test(model,test_loader)
final_val_acc = val_acc
last_lr=scheduler.get_last_lr()[-1]
scheduler.step()
# save the model after training
torch.save(model, save_path+'/model_save/'+ name_model)
model_path = save_path+'/model_save/'+ name_model
data = {'Lay.rem': Iden_num}
data["train_acc"] = train_acc
data["val_acc"] = val_acc
data["test_acc"] = test_acc
accumulated_data = accumulated_data.append(data, ignore_index=True)
accumulated_data.to_excel(save_path+'result.xlsx', index=False)
# count the number of remaining ReLU layers
relu_num = 0
for name, module in model.named_modules():
if type(module) == torch.nn.ReLU6:
relu_num +=1
# stop the loop once no ReLU layer left or model no longer perform well
if relu_num ==1 or final_val_acc < 20:
break
wandb.finish()
if __name__ == '__main__':
main()