-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathbenchmark_utils.py
95 lines (83 loc) · 2.94 KB
/
benchmark_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import numpy as np
import random
import math
import open3d as o3d
from utils.pointcloud import make_point_cloud
def exact_auc(errors, thresholds):
"""
Calculate the exact area under curve, borrow from https://github.com/magicleap/SuperGluePretrainedNetwork
"""
sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(errors)
errors = np.r_[0., errors]
recall = np.r_[0., recall]
aucs = []
for t in thresholds:
last_index = np.searchsorted(errors, t)
r = np.r_[recall[:last_index], recall[last_index - 1]]
e = np.r_[errors[:last_index], t]
aucs.append(np.trapz(r, x=e) / t)
return aucs
def set_seed(seed=51):
"""
Set the random seed for reproduce the results.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def icp_refine(src_keypts, tgt_keypts, pred_trans):
"""
ICP algorithm to refine the initial transformation
Input:
- src_keypts [1, num_corr, 3] FloatTensor
- tgt_keypts [1, num_corr, 3] FloatTensor
- pred_trans [1, 4, 4] FloatTensor, initial transformation
"""
src_pcd = make_point_cloud(src_keypts.detach().cpu().numpy()[0])
tgt_pcd = make_point_cloud(tgt_keypts.detach().cpu().numpy()[0])
initial_trans = pred_trans[0].detach().cpu().numpy()
# change the convension of transforamtion because open3d use left multi.
refined_T = o3d.registration.registration_icp(
src_pcd, tgt_pcd, 0.10, initial_trans,
o3d.registration.TransformationEstimationPointToPoint()).transformation
refined_T = torch.from_numpy(refined_T[None, :, :]).to(pred_trans.device).float()
return refined_T
def is_rotation_matrix(R):
"""
Checks if a matrix is a valid rotation matrix.
Input:
- R: [3, 3] rotation matrix
Output:
- True/False
"""
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype=R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-3
def rot_to_euler(R):
"""
Convert the rotation matrix to euler angles(degree)
Input:
- R: [3, 3] rotation matrix
Output:
- alpha. [3], the rotation angle (in degrees) along x,y,z axis.
"""
assert (is_rotation_matrix(R))
sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])
singular = sy < 1e-6
if not singular:
x = math.atan2(R[2, 1], R[2, 2])
y = math.atan2(-R[2, 0], sy)
z = math.atan2(R[1, 0], R[0, 0])
else:
x = math.atan2(-R[1, 2], R[1, 1])
y = math.atan2(-R[2, 0], sy)
z = 0
return np.array([x * 180 / np.pi, y * 180 / np.pi, z * 180 / np.pi])