forked from jeya-maria-jose/TransWeather
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·315 lines (244 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import time
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
# from train_data_functions import TrainData
from train_data_functions_offset import TrainData
from val_data_functions import ValData
from utils import to_psnr, print_log, validation, adjust_learning_rate
from torchvision.models import vgg16
from perceptual import LossNetwork
import os
import numpy as np
import random
from torch.utils.tensorboard import SummaryWriter
# from transweather_model_new import Transweather
# from transweather_model import Transweather
from transweather_model_teacher import TransweatherTeacher as Transweather
from train_psnrloss import PSNRLoss
import pytorch_ssim
from utils import calc_psnr, calc_ssim
### NOTE: add GD path ###
# import sys
# sys.path.append('/content/drive/MyDrive/train/data')
### NOTE: backend agg ###
# plt.switch_backend('agg')
# --- Parse hyper-parameters --- #
parser = argparse.ArgumentParser(description='Hyper-parameters for network')
parser.add_argument('-learning_rate', help='Set the learning rate', default=2e-4, type=float)
parser.add_argument('-crop_size', help='Set the crop_size', default=[512, 512], nargs='+', type=int)
parser.add_argument('-train_batch_size', help='Set the training batch size', default=10, type=int)
parser.add_argument('-epoch_start', help='Starting epoch number of the training', default=0, type=int)
# parser.add_argument('-lambda_loss', help='Set the lambda in loss function', default=0.04, type=float)
parser.add_argument('-lambda_loss', help='Set the lambda in loss function', default=0.01, type=float)
parser.add_argument('-val_batch_size', help='Set the validation/test batch size', default=1, type=int)
parser.add_argument('-exp_name', help='directory for saving the networks of the experiment', default="ckpt", type=str)
parser.add_argument('-seed', help='set random seed', default=19, type=int)
parser.add_argument('-num_epochs', help='number of epochs', default=1000, type=int)
# parser.add_argument('-logdir', help='for tensorboard', default="TeacherTry12.5_combine", type=str)
parser.add_argument('-logdir', help='for tensorboard', default="further_offset", type=str)
args = parser.parse_args()
learning_rate = args.learning_rate
crop_size = args.crop_size
train_batch_size = args.train_batch_size
epoch_start = args.epoch_start
lambda_loss = args.lambda_loss
val_batch_size = args.val_batch_size
exp_name = args.exp_name
num_epochs = args.num_epochs
tensorboard_logdir = args.logdir
#set seed
seed = args.seed
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed) # If GPU is available, change to GPU
random.seed(seed)
print('Seed:\t{}'.format(seed))
print('--- Hyper-parameters for training ---')
print('learning_rate: {}\ncrop_size: {}\ntrain_batch_size: {}\nval_batch_size: {}\nlambda_loss: {}'.format(learning_rate, crop_size,
train_batch_size, val_batch_size, lambda_loss))
##################### NOTE: Change the path to the dataset #####################
# train_data_dir = "/home/za/DATASET/DATA_20220531/train"
# validate_data_dir = "/home/za/DATASET/DATA_20220531/validate"
# test_data_dir = "/home/zhangao/za/DATA_20220531/test_specific"
train_data_dir = "/home/za/DATASET/DATA_20220617/train"
validate_data_dir = "/home/za/DATASET/DATA_20220617/validate"
test_data_dir = "/home/za/DATASET/DATA_20220617/test_specific"
rain_L_dir = "rain_L"
rain_H_dir = "rain_H"
gt_dir = "gt"
# train_data_dir = "/dataset/public/raindrop/train"
# validate_data_dir = "/dataset/public/raindrop/test"
# rain_L_dir = "data"
# rain_H_dir = None
# gt_dir = "gt"
# --- Gpu device --- #
device_ids = [Id for Id in range(torch.cuda.device_count())]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Define the network --- #
net = Transweather()
# --- Build optimizer --- #
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# --- Multi-GPU --- #
net = net.to(device)
net = nn.DataParallel(net, device_ids=device_ids)
# --- Define the perceptual loss network --- #
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
# vgg_model = nn.DataParallel(vgg_model, device_ids=device_ids)
for param in vgg_model.parameters():
param.requires_grad = False
modelbest_path = "./{}/latest".format(exp_name)
# --- Load the network weight --- #
if os.path.exists('./{}/'.format(exp_name))==False:
os.mkdir('./{}/'.format(exp_name))
if os.path.exists(modelbest_path):
resume_state = torch.load(modelbest_path)
net.load_state_dict(resume_state["state_dict"])
optimizer.load_state_dict(resume_state["optimizer"])
epoch_start = resume_state["epoch"]
print("----- latest trained loaded -----")
elif os.path.exists("./ckpt/pretrained"):
# net.load_state_dict(torch.load('./{}/pretrained_on_data2070'.format(exp_name)))
# print("----- pre-trained with DATA2070images loaded -----")
# resume_state = torch.load(torch.load('./{}/pretrained'.format(exp_name)))
resume_state = torch.load("./ckpt/pretrained")
net.load_state_dict(resume_state["state_dict"])
print("----- pre-trained model loaded -----")
else:
print('--- no weight loaded ---')
# pytorch_total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
# print("Total_params: {}".format(pytorch_total_params))
loss_network = LossNetwork(vgg_model)
loss_network.eval()
# --- Load training data and validation/test data --- #
lbl_train_data_loader = DataLoader(TrainData(crop_size, train_data_dir, rain_L_dir, rain_H_dir, gt_dir), batch_size=train_batch_size, shuffle=True, num_workers=4)
## Uncomment the other validation data loader to keep an eye on performance
## but note that validating while training significantly increases the train time
val_data_loader1 = DataLoader(ValData(validate_data_dir, rain_L_dir, rain_H_dir, gt_dir), batch_size=val_batch_size, shuffle=False, num_workers=4)
print("Number of training data: {}".format(len(lbl_train_data_loader)))
print("Number of validation data: {}".format(len(val_data_loader1)))
# --- Previous PSNR and SSIM in testing --- #
net.eval()
################ Note########################
## Uncomment the other validation data loader to keep an eye on performance
## but note that validating while training significantly increases the test time
# old_val_psnr, old_val_ssim = validation(net, val_data_loader, device, exp_name)
old_val_psnr1, old_val_ssim1 = validation(net, val_data_loader1, device, exp_name)
# old_val_psnr2, old_val_ssim2 = validation(net, val_data_loader2, device, exp_name)
# print('Rain 800 old_val_psnr: {0:.2f}, old_val_ssim: {1:.4f}'.format(old_val_psnr, old_val_ssim))
print('Rain Drop old_val_psnr: {0:.2f}, old_val_ssim: {1:.4f}'.format(old_val_psnr1, old_val_ssim1))
# print('Test1 old_val_psnr: {0:.2f}, old_val_ssim: {1:.4f}'.format(old_val_psnr2, old_val_ssim2))
net.train()
log_dir = os.path.join("./logs", tensorboard_logdir)
if not os.path.exists(log_dir):
os.mkdir(log_dir)
writer = SummaryWriter(log_dir)
count = epoch_start * len(lbl_train_data_loader)
### NOTE: initialization, testing parameters ###
psnr_loss = PSNRLoss(toY=False)
ssim_loss = pytorch_ssim.SSIM()
for epoch in range(epoch_start,num_epochs):
psnr_list = []
start_time = time.time()
adjust_learning_rate(optimizer, epoch)
for batch_id, train_data in enumerate(lbl_train_data_loader):
input_image, gt = train_data
input_image = input_image.to(device)
gt = gt.to(device)
# --- Zero the parameter gradients --- #
optimizer.zero_grad()
# --- Forward + Backward + Optimize --- #
net.train()
pred_image = net(input_image)
### NOTE: trying different loss functions ###
# smooth_loss = F.smooth_l1_loss(pred_image, gt)
# smooth_loss = F.mse_loss(pred_image, gt)
# smooth_loss = psnr_loss(pred_image, gt)
# smooth_loss = psnr_loss(pred_image, gt) - ssim_loss(pred_image, gt)
smooth_loss = F.smooth_l1_loss(pred_image, gt) + psnr_loss(pred_image, gt) - ssim_loss(pred_image, gt)
# smooth_loss = F.cross_entropy(pred_image, gt)
# smooth_loss = F.kl_div(pred_image, gt) # Kullback-Leibler divergence
# smooth_loss = F.nll_loss(pred_image, gt) # negative log likelihood
perceptual_loss = loss_network(pred_image, gt)
loss = smooth_loss + lambda_loss*perceptual_loss
# loss = F.smooth_l1_loss(pred_image, gt) + psnr_loss(pred_image, gt)
loss.backward()
optimizer.step()
# --- To calculate average PSNR --- #
psnr_list.extend(to_psnr(pred_image, gt))
count += 1
writer.add_scalar("Loss/train", loss.item(), count)
if not (batch_id % 100):
save_state = {
"epoch": epoch,
"state_dict": net.state_dict(),
"optimizer": optimizer.state_dict()
}
torch.save(save_state, './{}/latest'.format(exp_name))
print('Epoch: {0}, Iteration: {1}, loss: {2}'.format(epoch, batch_id, loss.item()))
# --- Calculate the average training PSNR in one epoch --- #
train_psnr = sum(psnr_list) / len(psnr_list)
# --- Save the network parameters --- #
save_state = {
"epoch": epoch,
"state_dict": net.state_dict(),
"optimizer": optimizer.state_dict()
}
torch.save(save_state, './{}/latest'.format(exp_name))
# --- Use the evaluation model in testing --- #
net.eval()
# val_psnr, val_ssim = validation(net, val_data_loader, device, exp_name)
# val_psnr1, val_ssim1 = validation(net, val_data_loader1, device, exp_name, psnr_loss, ssim_loss, loss_network)
# val_psnr2, val_ssim2 = validation(net, val_data_loader2, device, exp_name)
######################## NOTE: validation specific steps ###################
psnr_list = []
ssim_list = []
val_lossval_list = []
for batch_id, val_data in enumerate(val_data_loader1):
with torch.no_grad():
input_im, gt, imgid = val_data
input_im = input_im.to(device)
gt = gt.to(device)
pred_image = net(input_im)
val_smooth_loss = F.smooth_l1_loss(pred_image, gt) + psnr_loss(pred_image, gt) - ssim_loss(pred_image, gt)
val_perceptual_loss = loss_network(pred_image, gt)
val_loss = val_smooth_loss + lambda_loss * val_perceptual_loss
# val_loss = F.smooth_l1_loss(pred_image, gt) + psnr_loss(pred_image, gt)
val_lossval_list.append(val_loss.item())
# --- Calculate the average PSNR --- #
psnr_list.extend(calc_psnr(pred_image, gt))
# --- Calculate the average SSIM --- #
ssim_list.extend(calc_ssim(pred_image, gt))
val_psnr1 = sum(psnr_list) / (len(psnr_list) + 1e-10)
val_ssim1 = sum(ssim_list) / (len(ssim_list) + 1e-10)
val_lossval = sum(val_lossval_list) / (len(val_lossval_list) + 1e-10)
############################################################################
writer.add_scalar("Validation/PSNR", val_psnr1, count)
writer.add_scalar("Validation/SSIM", val_ssim1, count)
writer.add_scalar("Validation/loss", val_lossval, count)
one_epoch_time = time.time() - start_time
# print("Rain 800")
# print_log(epoch+1, num_epochs, one_epoch_time, train_psnr, val_psnr, val_ssim, exp_name)
print("Rain Drop")
print_log(epoch+1, num_epochs, one_epoch_time, train_psnr, val_psnr1, val_ssim1, exp_name)
# print("Test1")
# print_log(epoch+1, num_epochs, one_epoch_time, train_psnr, val_psnr2, val_ssim2, exp_name)
# --- update the network weight --- #
if val_psnr1 >= old_val_psnr1:
save_state = {
"epoch": epoch,
"state_dict": net.state_dict(),
"optimizer": optimizer.state_dict()
}
torch.save(save_state, './{}/best'.format(exp_name))
print('model saved')
old_val_psnr1 = val_psnr1
# Note that we find the best model based on validating with raindrop data.