-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForest.py
executable file
·287 lines (243 loc) · 10.5 KB
/
Forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env Python
# coding=utf-8
"""
@Copyright ©2019 JuQi
@Author: JuQi
@Contact: [email protected]
@Software: PyCharm
@File: Forest.py
@Time: 2020/9/30 6:22 下午
@Introduction:
"""
import numpy as np
from sklearn.tree import DecisionTreeRegressor
# from sklearn.ensemble import RandomForestRegressor
import copy
from collections import deque
import random
import control
import time
import joblib
from joblib.parallel import Parallel, delayed
import os
from control import show_men_use
import gc
class Tree(object):
def __init__(self, data, target, max_depth, action_len, use_feature_num):
self.max_depth = max_depth
self.action_len = action_len
self.use_feature_num = use_feature_num
self.reality_tree = DecisionTreeRegressor(
max_depth=self.max_depth
)
self.use_feature = np.arange(self.action_len - 2)
np.random.shuffle(self.use_feature)
self.use_feature = self.use_feature[:self.use_feature_num]
self.use_feature[self.use_feature_num - 2] = self.action_len - 2
self.use_feature[self.use_feature_num - 1] = self.action_len - 1
data = np.array(data)
target = np.array(target)
self.reality_tree.fit(data[:, self.use_feature], target)
self.visit = 0
self.evaluate_value = 0
self.difference_value = 0
def predict(self, data):
data = np.array(data)
data.reshape(-1, control.action_len)
ans = self.reality_tree.predict(data[:, self.use_feature])
return ans
def train(self, data):
data = np.array(data)
return self.reality_tree.predict(data[:, self.use_feature])
''''''
def get_sample(tmp_data):
tmp_batch = random.sample(tmp_data, control.train_sample_data_len)
return tmp_batch
def parallel_get_tree_predict(tmp_trees, data):
tmp_sum = []
for tmp_i_tree in tmp_trees:
tmp_sum.append(tmp_i_tree.train(data))
return tmp_sum
class Forest(object):
def __init__(
self,
n_estimators=100,
action_len=control.action_len,
max_depth=15,
use_feature_num=25,
):
self.trees = []
self.n_estimators = np.int(n_estimators)
self.action_len = action_len
self.max_depth = max_depth
self.use_feature_num = use_feature_num
def init_random_forest(self, data, random_col=5000, sample_len=100, class_kind=5):
tmp_forest = []
if data:
for _ in range(self.n_estimators):
init_data_target = get_sample(data)
use_data, use_target = zip(*init_data_target)
tmp_forest.append(Tree(use_data, use_target))
else:
init_data = np.random.randint(2, size=(random_col, self.action_len))
init_target = (np.random.rand(random_col) - 0.5) * class_kind
for _ in range(self.n_estimators):
choose_col = np.random.choice(a=init_data.shape[0], size=sample_len)
use_data = init_data[choose_col, :]
use_target = init_target[choose_col]
tmp_forest.append(
Tree(
use_data,
use_target,
self.max_depth,
self.action_len,
self.use_feature_num
)
)
self.trees = tmp_forest
def forest_predict(self, data, is_mean=True):
tmp_sum = []
for i_tree in range(self.n_estimators):
tmp_sum.append(self.trees[i_tree].train(data))
tmp_sum = np.array(tmp_sum)
if is_mean:
return np.mean(tmp_sum, axis=0)
else:
return tmp_sum
def get_idx(self, evaluate_base):
idx_evaluate_base = np.arange(self.n_estimators)
return idx_evaluate_base[evaluate_base.argsort()]
def train(self, data_per_train, kill):
# show_men_use()
start = time.time()
data, target = zip(*data_per_train)
max_play = -1
tmp_tmp_sum = Parallel(n_jobs=control.train_use_cup_num, backend="multiprocessing")(
delayed(parallel_get_tree_predict)(
copy.deepcopy(
self.trees[i_tree * control.train_tree_part_len:(i_tree + 1) * control.train_tree_part_len]
),
copy.deepcopy(data)
) for i_tree in range(control.train_use_cup_num)
)
tmp_sum = []
for i_tmp_tmp_sum in tmp_tmp_sum:
tmp_sum.extend(i_tmp_tmp_sum)
end = time.time()
print('1时间', end - start)
for i_tree in range(self.n_estimators):
if self.trees[i_tree].visit > max_play:
max_play = self.trees[i_tree].visit
max_play += 1
tmp_sum = np.array(tmp_sum)
target = np.array(target)
# 现有的预测和训练集的差异
mean_ans = np.mean(tmp_sum, axis=0)
total_ans = mean_ans * self.n_estimators
total_bias = np.mean((mean_ans - target) ** 2)
evaluate_base = np.zeros(self.n_estimators) # 去掉這一颗树的分數(越大越好)
bias_base = np.zeros(self.n_estimators) # 树和目標的距離(越小越好)
difference_base = np.zeros(self.n_estimators) # 树和其余树的距離(越大越好)
evaluate_history = np.zeros(self.n_estimators)
e_total_evaluate = np.zeros(self.n_estimators)
d_total_evaluate = np.zeros(self.n_estimators)
# 用相对排名(不用绝对数据)代表分数
for i_tree in range(self.n_estimators):
reject_ans = (total_ans - tmp_sum[i_tree, :]) / (self.n_estimators - 1)
evaluate_base[i_tree] = np.mean(np.abs(reject_ans - target))
bias_base[i_tree] = np.mean(np.abs(tmp_sum[i_tree, :] - target))
difference_base[i_tree] = np.mean(np.abs(tmp_sum[i_tree, :] - mean_ans))
mean_bias = np.mean(bias_base) # 用作分数权重
mean_difference = np.mean(difference_base) # 用作分数权重
good_idx_evaluate_base = self.get_idx(evaluate_base) # 小的在前(好的在後)
good_idx_bias_base = self.get_idx(bias_base) # 小的在前(好的在前)
good_idx_difference_base = self.get_idx(difference_base) # 小的在前(好的在後)
for i_tree_idx in range(self.n_estimators):
op_point = i_tree_idx / self.n_estimators # 随着排名增加,分数增加
ne_point = 1 - i_tree_idx / self.n_estimators # 随着排名增加,分数减少
e_total_evaluate[good_idx_evaluate_base[i_tree_idx]] += (
op_point * (mean_difference + mean_bias))
d_total_evaluate[good_idx_bias_base[i_tree_idx]] += (ne_point * mean_bias)
d_total_evaluate[good_idx_difference_base[i_tree_idx]] += (op_point * mean_difference)
for i_tree in range(self.n_estimators):
self.trees[i_tree].evaluate_value = (self.trees[i_tree].evaluate_value * self.trees[
i_tree].visit + e_total_evaluate[i_tree]) / (self.trees[i_tree].visit + 1)
self.trees[i_tree].difference_value = (self.trees[i_tree].difference_value * self.trees[
i_tree].visit + d_total_evaluate[i_tree]) / (self.trees[i_tree].visit + 1)
self.trees[i_tree].visit += 1
evaluate_history[i_tree] = self.trees[i_tree].difference_value + self.trees[
i_tree].evaluate_value + control.C * np.sqrt(np.log(max_play) / self.trees[i_tree].visit)
print('平均值分数:', np.mean(evaluate_history))
print('target平均距離:', np.mean(bias_base))
print('difference_base平均距離:', np.mean(difference_base))
print('target平均距離和difference的差距:', np.mean(bias_base) - np.mean(difference_base))
# 删除差的树
idx = np.arange(self.n_estimators)
good_idx = idx[evaluate_history.argsort()][kill:]
new_trees = [self.trees[i_tree] for i_tree in good_idx]
self.trees = new_trees
# 计算剩下的树和目标的差距
tmp_sum = tmp_sum[good_idx, :]
need_fix_bias = (target - np.mean(tmp_sum, axis=0)) * (self.n_estimators - kill)
# 计算所需修正
data = np.reshape(data, (-1, self.action_len))
fix_bias = need_fix_bias / (kill)
target_change = target + fix_bias
# 补全剩下的树
for i_tree in range(kill):
self.trees.append(
Tree(
data,
target_change,
self.max_depth,
self.action_len,
self.use_feature_num
)
)
return total_bias
def get_data(self):
"""
:return:
"""
random_forest = [Forest(n_estimators=control.play_sample_tree_num) for _ in range(control.play_use_cup_num)]
for i_forest in range(control.play_use_cup_num):
random_forest[i_forest].trees = random.sample(self.trees, control.play_sample_tree_num)
tmp_game_data = Parallel(n_jobs=control.play_use_cup_num, backend="multiprocessing")(
delayed(sample_play_game)(random_forest[i_trees]) for i_trees in range(control.play_use_cup_num)
)
tmp_data = deque(maxlen=control.total_data_len)
total_score = 0
for i_game_data in tmp_game_data:
tmp_data.extend(i_game_data[0])
total_score += i_game_data[1]
total_score /= control.play_use_cup_num
print('这次平均分数:', total_score)
return tmp_data
def save_model(self, loop, dicti):
joblib.dump(self.trees, dicti + '(' + str(loop) + ').pkl')
def read_model(self, loop, dicti, is_refresh):
tmp_dic = dicti + '(' + str(loop) + ').pkl'
print(tmp_dic)
self.trees = joblib.load(tmp_dic)
if is_refresh:
for i_tree in range(self.n_estimators):
self.trees[i_tree].visit = 0
self.trees[i_tree].evaluate_value = 0
self.trees[i_tree].difference_value = 0
def sample_play_game(forest):
# show_men_use('开始一个训练')
game = Game(forest)
score = 0
for _ in range(control.one_cpu_once_play):
score += game.run_game(
{
"players": 2,
"random_start_player": True,
"colors": 5,
"rank": 5,
"hand_size": 5,
"max_information_tokens": 3
}
)
score /= control.one_cpu_once_play
return [game.game_data, score]