
Lab 4: Jacobians and Velocity Kinematics

MEAM 520, University of Pennsylvania

October 23, 2020

This lab consists of two portions, with a pre-lab due on Friday, October 30, by midnight (11:59
p.m.) and a lab report due on Friday, November 6, by midnight (11:59 p.m.). Late submissions will
be accepted until midnight on Monday following the deadline, but they will be penalized by 25% for each
partial or full day late. After the late deadline, no further assignments may be submitted; post a private
message on Piazza to request an extension if you need one due to a special situation.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator
and other tools, and consult outside sources such as the Internet. To help you actually learn the material,
what you submit must be your own work, not copied from any other individual or team. Any submissions
suspected of violating Penn’s Code of Academic Integrity will be reported to the Office of Student Conduct.
When you get stuck, post a question on Piazza or go to office hours!

Individual vs. Pair Programming
Work closely with your partner throughout the lab, following these guidelines, which were adapted from
“All I really needed to know about pair programming I learned in Kindergarten,” by Williams and Kessler,
Communications of the ACM, May 2000. This article is available on Canvas under Files / Resources.

• Start with a good attitude, setting aside any skepticism, and expect to jell with your partner.

• Don’t start alone. Arrange a meeting with your partner as soon as you can.

• Use just one setup, and sit side by side. For a programming component, a desktop computer with a
large monitor is better than a laptop. Make sure both partners can see the screen.

• At each instant, one partner should be driving (writing, using the mouse/keyboard, moving the robot)
while the other is continuously reviewing the work (thinking and making suggestions).

• Change driving/reviewing roles at least every 30 minutes, even if one partner is much more experienced
than the other. You may want to set a timer to help you remember to switch.

• If you notice an error in the equation or code that your partner is writing, wait until they finish the
line to correct them.

• Stay focused and on-task the whole time you are working together.

• Take a break periodically to refresh your perspective.

• Share responsibility for your project; avoid blaming either partner for challenges you run into.

• Recognize that working in pairs usually takes more time than working alone, but it produces better
work, deeper learning, and a more positive experience for the participants.

1

1 Pre-lab Tasks (due October 30, 5 pts)
Directions: For the pre-lab component of this lab, you turn in your own individual work. Show your work
to receive full credit. These calculations should be typed or written legibly. Submit a pdf on Gradescope
containing your work.

1. Derive the forward linear velocity kinematics for the Lynx robot for when you are tracking the end
effector. (Note, you do not need to do all the computations by hand, but you should explain your steps
and your final result. Your submission should include a copy of any code you write for this step.)

2. Do a sanity check: Let’s say the Lynx starts in the zero position and only one of the joints moves.
What do you expect the corresponding velocity of the end effector to be? Does your FK reflect this
velocity?

2 Lab (due November 6, 45 pts)
The remainder of the lab should be done with a partner. You may work with anyone you choose, but you
must work with them for all parts of this assignment. You will both turn in the same report and code (see
Submission Instructions), for which you are jointly responsible and you will both receive the same grade.

2.1 Methods
1. Let’s say that you are tracking the position and orientation of joint i on the robot (where i = 0 is

the base, i = 1, . . . , 5 is a joint, and i = 6 is the center of the gripper). The robot is currently in
configuration q and the joints are moving with velocity q̇. What are the linear and angular velocity of
joint i in the world frame?

2. Let’s say that you are tracking the position and orientation of joint i on the robot and would like the
joint to move with a linear velocity 0v and angular velocity 0ω, both expressed in the world frame.
The robot is currently in configuration q. What joint velocities should the robot execute to move joint
i in the desired direction?

2.2 Coding
2.2.1 Simulation Environment Updates

We’ve made a few tweaks to the simulation environment, and you must take the following steps to have an
up to date simulator. These steps are needed for all students!

1. Update the Gazebo simulator: On the Virtual Machine, open a terminal and run the command

cd ~/meam520_ws/src/meam520_sim && git pull

This will update the code on your machine to match the current version.

2. Update the Core: From Canvas, redownload the Core.zip file for your respective language and
extract it in the same location as for Lab0.

3. (Gazebo Pro Tip:) Right-click on the robot and select ‘Move To’ to automatically zoom your view
into the robot. Hold shift, click the robot’s base, and drag to reorient the view.

To launch the simulation simply use:
$roslaunch al5d_gazebo lab4.launch

2

2.3 Your Tasks
Download the file lab4.zip attached to this assignment. The zip file contains two empty functions, which
you should fill in

1. FK_velocity:

• Inputs:

◦ q - a 1× 6 vector corresponding to the robot’s current configuration
◦ dq - a 1× 6 vector of joint velocities
◦ joint - an integer ∈ [0, 6] corresponding to which joint you are tracking (with 0 being the

base and 6 being the end-effector)

• Outputs:

◦ v - the resulting linear velocity of the joint in the world frame
◦ omega - the resulting angular velocity of the joint in the world frame

2. IK_velocity:

• Inputs:

◦ q - a 1× 6 vector corresponding to the robot’s current configuration
◦ v - the desired linear velocity of the joint in the world frame
◦ omega - the desired angular velocity of the joint in the world frame
◦ joint - an integer ∈ [0, 6] corresponding to which joint you are tracking (with 0 being the

base and 6 being the end-effector)

• Outputs:

◦ dq - a 1× 6 vector of joint velocities according to:
∗ If it is possible to achieve the exact input velocities v and omega, then dq should be the
joint velocities that do so.

∗ If it is not possible to achieve the exact input velocities v and omega, then dq should be
the joint velocities that minimize least squared error between the resulting and desired
velocities.

∗ If any of the inputs in v or omega contain NaN, then that velocity is unconstrained and can
be anything. For example, v=[1,NaN,NaN];omega=[1,0,0] means that we want the end
effector to move with angular velocity [1,0,0] rad/s while translating in the x direction,
but the translation in the y and z direction does not matter.

3. Not required, but probably helpful: Write a function calcJacobian that takes inputs q and joint and
calculates the corresponding linear and angular velocity Jacobians.

The zip also contains calculateFK_sol code for the Lynx.
Additionally, the zip contains a script TestVelocity_Sim. This script is an example script for how to

send a velocity command to the simulated robot.

2.4 Evaluation
Evaluate your expressions to check that they are correct. Some tests to consider are:

• Start in the zero position and assume only one of the joints moves. What do you expect the corre-
sponding velocity of the end effector to be? Does your FK reflect this velocity?

3

• Using geometric intuition, where are the singularities? Under what conditions do you expect there to
be no solutions to the velocity IK? Explain. Are these configurations reflected in your mathematical
expressions?

• What trajectory does the end effector trace out when all joints are moving at a constant velocity?

• What joint angle trajectories should the robot execute to have the end effector follow a straight line?
A circle? What if you also want to control the orientation?

2.4.1 Analysis

Discuss the Lynx forward and inverse velocity kinematics in the context of your data and observations. Do
your results make sense? What movements is the robot good at? What movements is it bad at? Under
what circumstances might you want to use velocity control over position control (which you have done in
previous labs)?

3 Submission Instructions
Submit the assignment. One person from each pair should submit code and a pdf copy of the report to
the Gradescope assignment for Lab 4. After selecting the files and uploading them, the website will take
you to the next page, where in the top right corner you should add your group members. If you do not add
your group members they will not get credit for the assignment.

3.1 Report
The format of the report is up to you, but you should make sure that it is clear, organized, and readable.
The report should include:

1. Your answers to the conceptual questions in the Methods section, typed or legibly hand-written.

2. A short 1-pg description of how the concepts are incorporated into your code. Include pointers to
important line numbers of subfunctions in your code. This will help the graders understand and
provide feedback on your work. (This description can be bulleted. No need to use full sentences.)

3. Your experimental results, including a description of your experimental setup (i.e., what were your
inputs) and collected data.

4. Your analysis comparing expectations against reality and extrapolations to general conclusions you
would make from this lab.

3.2 Code Submission
Your code should be cleaned up so that it is easy to follow. Remove any commented-out commands that
you are not using, and add comments to explain the tricky steps. Clearly indicate which parts of the code
correspond to which parts of the lab. Your code submission should include:

1. Your FK_velocity.

2. Your IK_velocity.

3. Any additional functions needed to run your code not included in the original code.

Each file should be attached separately to Gradescope. Do not zip them into a single file attachment.

4

	Pre-lab Tasks (due October 30, 5 pts)
	Lab (due November 6, 45 pts)
	Methods
	Coding
	Simulation Environment Updates

	Your Tasks
	Evaluation
	Analysis

	Submission Instructions
	Report
	Code Submission

