-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_large.py
497 lines (372 loc) · 13.8 KB
/
utils_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import io
import json
from typing import *
import pickle
import torch
import torch.nn.utils.rnn as rnn
import torch_sparse
import numpy as np
from torch import Tensor
from torch_scatter import scatter, scatter_max, scatter_min
from torch_geometric.utils import softmax
import torch
from torch import Tensor
from functools import partial
import time
def view2(x):
if x.dim() == 2:
return x
return x.view(-1, x.size(-1))
def view3(x: Tensor) -> Tensor:
if x.dim() == 3:
return x
return x.view(1, x.size(0), -1)
def view_back(M):
return view3(M) if M.dim() == 2 else view2(M)
def cosine_sim(x1, x2=None, eps=1e-8):
x2 = x1 if x2 is None else x2
w1 = x1.norm(p=2, dim=1, keepdim=True)
w2 = w1 if x2 is x1 else x2.norm(p=2, dim=1, keepdim=True)
return torch.mm(x1, x2.t()) / (w1 * w2.t()).clamp(min=eps)
def sim(x1: Tensor, x2: Tensor):
return torch.mm(x1, x2.transpose(0, 1))
def l1_dist(x1: Tensor, x2: Tensor):
return torch.cdist(x1, x2, p=1.0)
def l2_dist(x1: Tensor, x2: Tensor):
return torch.cdist(x1, x2, p=2.0)
def cosine_distance(x1, x2, eps=1e-8):
return 1 - cosine_sim(x1, x2, eps)
def to_tensor(device, dtype, *args):
return apply(lambda x: torch.tensor(x, device=device, dtype=dtype), *args)
def orthogonal_projection(W: torch.Tensor) -> Tensor:
try:
u, s, v = torch.svd(W)
except: # torch.svd may have convergence issues for GPU and CPU.
try:
u, s, v = torch.svd(W + 1e-4 * W.mean() * torch.rand_like(W))
except:
return W
return torch.mm(u, v.t())
def has_key(mp, k):
return mp is not None and k in mp and mp[k] is not None
def apply(func, *args):
if func is None:
func = lambda x: x
lst = []
for arg in args:
lst.append(func(arg))
return tuple(lst)
def norm_process(embed: torch.Tensor, eps=1e-5) -> torch.Tensor:
n = embed.norm(dim=1, p=2, keepdim=True)
embed = embed / (n + eps)
return embed
def norm_embed(embed: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
return norm_process(embed)
def dict_values_to_tensor(d: {}, device="cuda"):
dict_tensor = [torch.tensor(d[i], dtype=torch.long, device=device) for i in range(len(d))]
packed = rnn.pack_sequence(dict_tensor, False)
return packed
def seperate_index_type(graph):
return graph["edge_index"], graph["edge_type"]
def lst_argmax(lst: List[Any], min=False):
func = torch.argmin if min else torch.argmax
original_size = lst[0].size()
t = []
for i in lst:
t.append(i.view(1, -1))
t = torch.cat(t, dim=0)
t = func(t, dim=0)
return t.view(original_size)
def print_size(*args, **kwargs):
print("---PRINTSIZE---")
for k, v in kwargs.items():
if v is None:
print(k, "is None")
elif isinstance(v, Tensor):
print(k, v.size())
else:
print(k, v)
print("---PRINT END---")
def save_vectors(fname, x, words):
n, d = x.shape
fout = io.open(fname, 'w', encoding='utf-8')
fout.write(u"%d %d\n" % (n, d))
for i in range(n):
fout.write(words[i] + " " + " ".join(map(lambda a: "%.4f" % a, x[i, :])) + "\n")
fout.close()
def apply_on_sparse(func, tensor):
tensor = tensor.coalesce()
values = func(tensor._values())
return ind2sparse(tensor._indices(), tensor.size(), values=values)
def ind2sparse(indices: Tensor, size, size2=None, dtype=torch.float, values=None):
device = indices.device
if isinstance(size, int):
size = (size, size if size2 is None else size2)
assert indices.dim() == 2 and len(size) == indices.size(0)
if values is None:
values = torch.ones([indices.size(1)], device=device, dtype=dtype)
else:
assert values.dim() == 1 and values.size(0) == indices.size(1)
return torch.sparse_coo_tensor(indices, values, size)
# def ind2sparseNd(ind:Tensor, sizes)
def rebuild_with_indices(sp: Tensor):
sp = sp.coalesce()
return ind2sparse(sp._indices(), sp.size(0), sp.size(1)).coalesce()
def rdpm(total, cnt):
return torch.randperm(total)[:cnt]
def procrustes(emb1, emb2, link0, link1):
u, s, v = torch.svd(emb2[link1].t().mm(emb1[link0]))
return u.mm(v.t())
def z_score(embed):
mean = torch.mean(embed, dim=0)
std = torch.std(embed, dim=0)
return (embed - mean) / std
def get_iv(sps: List[Tensor]):
iv = []
for sp in sps:
a = sp.coalesce()
iv += [a._indices(), a._values()]
return tuple(iv)
def sparse_softmax(x: Tensor, dim=0):
v = softmax(x._values(), x._indices()[dim])
return ind2sparse(x._indices(), x.size(), values=v)
def batch_spspmm(a, b, batch_size=1000, verbose=10, filter_softmax=0.01):
n = a.size(0)
m = a.size(1)
assert m == b.size(0)
k = b.size(1)
ai, av, bi, bv = get_iv([a, b])
alen = av.numel()
result = None
print('batch spmm begins')
for id_begin in range(0, alen, batch_size):
id_end = min(alen, id_begin + batch_size)
i, v = torch_sparse.spspmm(ai[:, id_begin:id_end], av[id_begin:id_end], bi, bv, n, m, k)
curr = torch.sparse_coo_tensor(i, v, [n, k])
result = curr if result is None else result + curr
# result = result.coalesce()
result = filter_which(sparse_softmax(result), eps=filter_softmax)
if id_begin % batch_size * verbose == 0:
print('batch spmm, total', alen, 'complete', id_begin,
' total result=', result._values().size())
return result
def spspmm(a, b, separate=False):
n = a.size(0)
m = a.size(1)
assert m == b.size(0)
k = b.size(1)
ai, av, bi, bv = get_iv([a, b])
# print('n,m,k=', n, m, k)
# print('ai, av, bi, bv=', apply(lambda x: x.numel(), ai, av, bi, bv))
i, v = torch_sparse.spspmm(ai, av, bi, bv, n, m, k)
if separate:
nonzero_mask = v != 0.
return i[:, nonzero_mask], v[nonzero_mask], [n, k]
return torch.sparse_coo_tensor(i, v, [n, k])
def spmm_ds(d: Tensor, s: Tensor) -> Tensor:
return spmm(s.t(), d.t()).t()
def spmm_sd(s: Tensor, d: Tensor) -> Tensor:
s = s.coalesce()
i, v, s, t = s._indices(), s._values(), s.size(0), s.size(1)
return torch_sparse.spmm(i, v, s, t, d)
def spmm(s: Tensor, d: Tensor) -> Tensor:
if s.is_sparse and d.is_sparse:
return spspmm(s, d)
elif s.is_sparse:
return spmm_sd(s, d)
elif d.is_sparse:
return spmm_ds(s, d)
else:
return s.mm(d)
def masked_minmax(a: Tensor, eps=1e-8, masked_val=0., in_place=True):
mask = a != masked_val
if mask.sum().item() == 0:
return a
aa = a
a = minmax(a[mask], eps=eps)
if not in_place:
aa = aa.clone().detach()
aa[mask] = a
return aa
def minmax(a: Tensor, dim=-1, eps=1e-8, in_place=True) -> Tensor:
if a.is_sparse:
return sparse_minmax(a, eps, in_place)
a = a - a.min(dim, keepdim=True)[0]
a = a / (eps + a.max(dim, keepdim=True)[0])
return a
def sparse_minmax(a: Tensor, eps=1e-8, in_place=True) -> Tensor:
a_x = a._values()
a_x = minmax(a_x, eps=eps)
if in_place:
a._values().copy_(a_x)
return a
ret = ind2sparse(a._indices(), a.size(), values=a_x)
return ret
def to_torch_sparse(matrix, dtype=float, device="cuda"):
matrix = matrix.tocoo()
return ind2sparse(torch.LongTensor([matrix.row.tolist(), matrix.col.tolist()]),
values=torch.tensor(matrix.data.astype(dtype)), size=tuple(matrix.shape)).to(device)
@torch.no_grad()
def dense_to_sparse_mini_batch(X, batch_size=5000):
inds, vals = [], []
for begin in range(0, X.size(0), batch_size):
end = min(X.size(0), begin + batch_size)
ind, val = dense_to_sparse(X[begin:end], True)
ind[0] += begin
inds.append(ind)
vals.append(val)
inds = torch.cat(inds, dim=-1)
vals = torch.cat(vals, dim=0)
x_typename = torch.typename(X).split('.')[-1]
sparse_tensortype = getattr(torch.sparse, x_typename)
return sparse_tensortype(inds, vals, X.size()).coalesce()
def dense_to_sparse(x, sep=False):
if x.is_sparse:
return x
""" converts dense tensor x to sparse format """
x_typename = torch.typename(x).split('.')[-1]
sparse_tensortype = getattr(torch.sparse, x_typename)
indices = torch.nonzero(x)
if len(indices.shape) == 0: # if all elements are zeros
return sparse_tensortype(*x.shape)
indices = indices.t()
values = x[tuple(indices[i] for i in range(indices.shape[0]))]
if sep:
return indices, values
return sparse_tensortype(indices, values, x.size()).coalesce()
def scatter_op(tensor: Tensor, op="sum", dim=-1, dim_size=None):
tensor = tensor.coalesce()
return scatter(tensor._values(), tensor._indices()[dim], reduce=op, dim_size=dim_size)
def sparse_max(tensor: Tensor, dim=-1):
tensor = tensor.coalesce()
return scatter_max(tensor._values(), tensor._indices()[dim], dim_size=tensor.size(dim))
def sparse_min(tensor: Tensor, dim=-1):
tensor = tensor.coalesce()
return scatter_min(tensor._values(), tensor._indices()[dim], dim_size=tensor.size(dim))
def sparse_argmax(tensor, scatter_dim, dim=0):
tensor = tensor.coalesce()
argmax = sparse_max(tensor, dim)[1]
argmax[argmax == tensor._indices().size(1)] = 0
return tensor._indices()[scatter_dim][argmax]
def sparse_argmin(tensor, scatter_dim, dim=0):
tensor = tensor.coalesce()
return tensor._indices()[scatter_dim][sparse_min(tensor, dim)[1]]
def mp2list(mp, assoc=None):
if assoc is None:
return sorted(list(mp.keys()), key=lambda x: mp[x])
if isinstance(assoc, Tensor):
assoc = assoc.cpu().numpy()
return mp2list({k: assoc[v] for k, v in mp.items()}, None)
def random_split(y: Tensor, total=15000, cnt_test=9000, cnt_train=4500, dim=1, device='cuda'):
sel = torch.randperm(total, device=device)
sel_test = sel[:cnt_test]
sel_train = sel[cnt_test: cnt_test + cnt_train]
sel_val = sel[cnt_test + cnt_train:]
test = y.index_select(dim, sel_test)
train = y.index_select(dim, sel_train)
val = y.index_select(dim, sel_val)
return train, test, val
def sparse_dense_element_wise_op(sparse: Tensor, dense: Tensor, op=torch.mul):
sparse = sparse.coalesce()
assert sparse.dim() == 2
ind, val = sparse._indices(), sparse._values()
val = op(val, dense[ind[0], ind[1]])
return ind2sparse(ind, sparse.size(), values=val)
def matrix_argmax(tensor: Tensor, dim=1):
assert tensor.dim() == 2
if tensor.is_sparse:
return sparse_argmax(tensor, dim, 1 - dim)
else:
return torch.argmax(tensor, dim)
def matrix_argmin(tensor: Tensor, dim=1):
assert tensor.dim() == 2
if tensor.is_sparse:
return sparse_argmin(tensor, dim, 1 - dim)
else:
return torch.argmin(tensor, dim)
def topk2spmat(val0, ind0, size, dim=0, device: torch.device = 'cuda', split=False):
if isinstance(val0, np.ndarray):
val0, ind0 = torch.from_numpy(val0), \
torch.from_numpy(ind0)
val0 = val0.to(device)
ind0 = ind0.to(device)
if split:
return val0, ind0, size
ind_x = torch.arange(size[dim]).to(device)
ind_x = ind_x.view(-1, 1).expand_as(ind0).reshape(-1)
ind_y = ind0.reshape(-1)
ind = torch.stack([ind_x, ind_y])
val0 = val0.reshape(-1)
filter_invalid = torch.logical_and(ind[0] >= 0, ind[1] >= 0)
ind = ind[:, filter_invalid]
val0 = val0[filter_invalid]
return ind2sparse(ind, list(size), values=val0)
def to_dense(x):
if isinstance(x, Tensor) and x.is_sparse:
return x.to_dense()
return x
def remain_topk_sim(matrix: Tensor, dim=0, k=1500, split=False):
# print(matrix.size())
if matrix.is_sparse:
matrix = matrix.to_dense()
val0, ind0 = torch.topk(matrix, dim=1 - dim, k=min(k, int(matrix.size(1 - dim))))
return topk2spmat(val0, ind0, matrix.size(), dim, matrix.device, split)
@torch.no_grad()
def save_similarity_matrix(sparse=False, **kwargs):
save = {}
for k, v in kwargs.items():
if v is None:
continue
# save[k] = v.clone().detach().cpu()
if sparse and not v.is_sparse:
save[k] = remain_topk_sim(v).clone().detach().cpu()
else:
save[k] = v.clone().detach().cpu()
return save
# torch.save(save, path)
# v = v.to_dense()
# np.save(path + k, v.cpu().numpy())
@torch.no_grad()
def resize_sparse(x: Tensor, new_size, ind_shift):
xi, xv = x._indices(), x._values()
for i, shift in enumerate(ind_shift):
if shift == 0:
continue
xi[i] += shift
return ind2sparse(xi, new_size, values=xv)
@torch.no_grad()
def filter_which(x: Tensor, **kwargs):
# ind_0 : gt 0
# val: lt 0.01
# ind_1 : eq 2
# ind_1: eq [2,4,56]
if not x.is_sparse:
filter_which(dense_to_sparse(x), **kwargs)
def cmpn(op, tensor, val):
if not isinstance(val, Iterable):
return op(tensor, val)
mask = None
multiple_op = isinstance(op, Iterable)
for i, item in enumerate(val):
curr = op[i](tensor, item) if multiple_op else op(tensor, item)
mask = curr if mask is None else torch.logical_and(mask, curr)
return mask
ind, val = x._indices(), x._values()
mask = None
for k, v in kwargs.items():
cmd = k.split('_')
op, v = v
if cmd[0] == 'ind':
dim = int(cmd[1])
curr = cmpn(op, ind[dim], v)
elif cmd[0] == 'val':
curr = cmpn(op, val, v)
else:
continue
mask = curr if mask is None else torch.logical_and(mask, curr)
mask = torch.arange(val.numel())[mask].to(ind.device)
# print('total', mask.numel(), 'total remain', mask.sum())
return ind2sparse(ind.index_select(1, mask), x.size(), values=val[mask])
def split_sp(sp: Tensor):
return sp._indices(), sp._values(), sp.size()