语言:
🇨🇳
🇺🇸
«NetworkSlimming»复现了论文Learning Efficient Convolutional Networks through Network Slimming
更详细的训练数据可以查看:
Network Slimming
利用L1
正则化对BN
层缩放因子进行稀疏训练,完成训练后再进行通道级别剪枝操作,最后通过微调恢复性能。在实际应用过程中实现了很好的效果
$ pip install -r requirements.txt
首先,设置环境变量
$ export PYTHONPATH=<project root path>
$ export CUDA_VISIBLE_DEVICES=0
然后进行训练-剪枝-微调
- 训练
$ python tools/train.py -cfg=configs/vggnet/vgg16_bn_cifar100_224_e100_sgd_mslr_slim_1e_4.yaml
- 剪枝
$ python tools/prune/prune_vggnet.py
- 微调
$ python tools/train.py -cfg=configs/vggnet/refine_pruned_0_2_vgg16_bn_cifar100_224_e100_sgd_mslr_slim_1e_4.yaml
最后,在配置文件的PRELOADED
选项中设置微调后的模型路径
$ python tools/test.py -cfg=configs/vggnet/refine_pruned_0_2_vgg16_bn_cifar100_224_e100_sgd_mslr_slim_1e_4.yaml
- zhujian - Initial work - zjykzj
- Eric-mingjie/network-slimming
- wlguan/MobileNet-v2-pruning
- 666DZY666/micronet
- foolwood/pytorch-slimming
@misc{liu2017learning,
title={Learning Efficient Convolutional Networks through Network Slimming},
author={Zhuang Liu and Jianguo Li and Zhiqiang Shen and Gao Huang and Shoumeng Yan and Changshui Zhang},
year={2017},
eprint={1708.06519},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
欢迎任何人的参与!打开issue或提交合并请求。
注意:
GIT
提交,请遵守Conventional Commits规范- 语义版本化,请遵守Semantic Versioning 2.0.0规范
README
编写,请遵守standard-readme规范
Apache License 2.0 © 2021 zjykzj