-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathconfig_htdemucs_6stems.yaml
127 lines (121 loc) · 3 KB
/
config_htdemucs_6stems.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
audio:
chunk_size: 485100 # samplerate * segment
min_mean_abs: 0.001
hop_length: 1024
training:
batch_size: 8
gradient_accumulation_steps: 1
grad_clip: 0
segment: 11
shift: 1
samplerate: 44100
channels: 2
normalize: true
instruments: ['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
target_instrument: null
num_epochs: 1000
num_steps: 1000
optimizer: adam
lr: 9.0e-05
patience: 2
reduce_factor: 0.95
q: 0.95
coarse_loss_clip: true
ema_momentum: 0.999
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
augmentations:
enable: true # enable or disable all augmentations (to fast disable if needed)
loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
loudness_min: 0.5
loudness_max: 1.5
mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
mixup_probs: [0.2, 0.02]
mixup_loudness_min: 0.5
mixup_loudness_max: 1.5
all:
channel_shuffle: 0.5 # Set 0 or lower to disable
random_inverse: 0.1 # inverse track (better lower probability)
random_polarity: 0.5 # polarity change (multiply waveform to -1)
inference:
num_overlap: 4
batch_size: 8
model: htdemucs
htdemucs: # see demucs/htdemucs.py for a detailed description
# Channels
channels: 48
channels_time:
growth: 2
# STFT
num_subbands: 1
nfft: 4096
wiener_iters: 0
end_iters: 0
wiener_residual: false
cac: true
# Main structure
depth: 4
rewrite: true
# Frequency Branch
multi_freqs: []
multi_freqs_depth: 3
freq_emb: 0.2
emb_scale: 10
emb_smooth: true
# Convolutions
kernel_size: 8
stride: 4
time_stride: 2
context: 1
context_enc: 0
# normalization
norm_starts: 4
norm_groups: 4
# DConv residual branch
dconv_mode: 3
dconv_depth: 2
dconv_comp: 8
dconv_init: 1e-3
# Before the Transformer
bottom_channels: 0
# CrossTransformer
# ------ Common to all
# Regular parameters
t_layers: 5
t_hidden_scale: 4.0
t_heads: 8
t_dropout: 0.0
t_layer_scale: True
t_gelu: True
# ------------- Positional Embedding
t_emb: sin
t_max_positions: 10000 # for the scaled embedding
t_max_period: 10000.0
t_weight_pos_embed: 1.0
t_cape_mean_normalize: True
t_cape_augment: True
t_cape_glob_loc_scale: [5000.0, 1.0, 1.4]
t_sin_random_shift: 0
# ------------- norm before a transformer encoder
t_norm_in: True
t_norm_in_group: False
# ------------- norm inside the encoder
t_group_norm: False
t_norm_first: True
t_norm_out: True
# ------------- optim
t_weight_decay: 0.0
t_lr:
# ------------- sparsity
t_sparse_self_attn: False
t_sparse_cross_attn: False
t_mask_type: diag
t_mask_random_seed: 42
t_sparse_attn_window: 400
t_global_window: 100
t_sparsity: 0.95
t_auto_sparsity: False
# Cross Encoder First (False)
t_cross_first: False
# Weight init
rescale: 0.1