-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
197 lines (149 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
from dataset import LocalizationDataset
from torch.utils.data import DataLoader
import numpy as np
from model import Localizer
from arguments import parse_args
import os
from torch.utils.tensorboard import SummaryWriter
if not os.path.isdir('logs'):
os.mkdir('logs')
def get_data_name(args, train):
"""
get the dataset name
:param args: experiment args
:param train: train / eval
:return: fname: the name of the file
"""
num_trajs = args.num_trajs
traj_len = args.sl
mode = 'train' if train else 'eval'
fname = '{}_data_trajs{}_sl{}.pkl'.format(mode, num_trajs, traj_len)
return fname
def get_logger():
root = './logs'
existings = os.listdir(root)
cnt = str(len(existings))
logger = SummaryWriter(os.path.join(root, cnt, 'tflogs'))
return logger, cnt
def save_args(args, run_id):
ret = vars(args)
path = os.path.join('logs', run_id, 'args.conf')
import json
with open(path, 'w') as fout:
json.dump(ret, fout)
def get_optim(args, model):
if args.optim == 'RMSProp':
optim = torch.optim.RMSprop(
model.parameters(), lr=args.lr)
elif args.optim == 'Adam':
optim = torch.optim.Adam(
model.parameters(), lr=args.lr)
else:
raise NotImplementedError
return optim
def get_model(args):
model = Localizer(args)
if torch.cuda.is_available() and args.gpu:
model = model.to('cuda')
return model
def get_data(args):
"""
get the localization dataset, both train and eval
:param args: experiment args
:return: train_data: the localization training data
eval_data: the localization evaluation data
"""
train_fname = get_data_name(args, True)
eval_fname = get_data_name(args, False)
import pickle
if not os.path.isdir('data'):
os.mkdir('data')
try:
with open(os.path.join('data', train_fname), 'rb') as fin:
train_data = pickle.load(fin)
with open(os.path.join('data', eval_fname), 'rb') as fin:
eval_data = pickle.load(fin)
except:
import data_utils
print("Load data failed, generating training data")
train_data = data_utils.gen_data(args.num_trajs, args.sl)
eval_data = data_utils.gen_data(args.num_trajs // 10, args.sl)
with open(os.path.join('data', train_fname), 'wb') as fout:
pickle.dump(train_data, fout, pickle.HIGHEST_PROTOCOL)
print("train data generated")
with open(os.path.join('data', eval_fname), 'wb') as fout:
pickle.dump(eval_data, fout, pickle.HIGHEST_PROTOCOL)
print("eval data generated")
return train_data, eval_data
def train(args, logger, run_id):
model = get_model(args)
optimizer = get_optim(args, model)
train_data, eval_data = get_data(args)
train_dataset = LocalizationDataset(train_data)
eval_dataset = LocalizationDataset(eval_data)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
num_workers=8, pin_memory=True, shuffle=True)
eval_loader = DataLoader(eval_dataset, batch_size=args.batch_size,
num_workers=8, pin_memory=True, shuffle=False)
os.mkdir(os.path.join('logs', run_id, 'models'))
cnt = 0
best_eval = 1000
from tqdm import tqdm
for epoch in tqdm(range(args.epochs)):
model.train()
for iteration, data in enumerate(train_loader):
cnt = cnt + 1
env_map, obs, pos, action = data
if torch.cuda.is_available() and args.gpu:
env_map = env_map.to('cuda')
obs = obs.to('cuda')
pos = pos.to('cuda')
action = action.to('cuda')
model.zero_grad()
loss, log_loss, particle_pred = model.step(
env_map, obs, action, pos, args)
loss.backward()
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if iteration % 50:
loss_last = log_loss.to('cpu').detach().numpy()
loss_all = loss.to('cpu').detach().numpy()
logger.add_scalar('train/loss_last', loss_last, cnt)
logger.add_scalar('train/loss', loss_all, cnt)
model.eval()
eval_loss_all = []
eval_loss_last = []
with torch.no_grad():
for iteration, data in enumerate(eval_loader):
env_map, obs, pos, action = data
if torch.cuda.is_available() and args.gpu:
env_map = env_map.to('cuda')
obs = obs.to('cuda')
pos = pos.to('cuda')
action = action.to('cuda')
model.zero_grad()
loss, log_loss, particle_pred = model.step(
env_map, obs, action, pos, args)
eval_loss_all.append(loss.to('cpu').detach().numpy())
eval_loss_last.append(log_loss.to('cpu').detach().numpy())
log_eval_last = np.mean(eval_loss_last)
log_eval_all = np.mean(eval_loss_all)
logger.add_scalar('eval/loss_last', log_eval_last, cnt)
logger.add_scalar('eval/loss', log_eval_all, cnt)
if log_eval_last < best_eval:
best_eval = log_eval_last
torch.save(model.state_dict(), os.path.join(
'logs', run_id, 'models', 'model_best'))
torch.save(optimizer.state_dict(), os.path.join(
'logs', run_id, 'models', 'optim_best'))
torch.save(model.state_dict(), os.path.join(
'logs', run_id, 'models', 'model_final'))
torch.save(optimizer.state_dict(), os.path.join(
'logs', run_id, 'models', 'optim_final'))
if __name__ == "__main__":
args = parse_args()
logger, run_id = get_logger()
save_args(args, run_id)
train(args, logger, run_id)