-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
368 lines (282 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from progressbar import ProgressBar
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
from config import gen_args
from data import PhysicsDataset
from data import load_data
from models.CompositionalKoopmanOperators import CompositionalKoopmanOperators
from utils import count_parameters, Tee, AverageMeter, rand_int, mix_iters, get_flat, print_args
args = gen_args()
os.system('mkdir -p ' + args.outf)
os.system('mkdir -p ' + args.dataf)
tee = Tee(os.path.join(args.outf, 'train.log'), 'w')
print_args(args)
# generate data
datasets = {phase: PhysicsDataset(args, phase) for phase in ['train', 'valid']}
for phase in ['train', 'valid']:
if args.gen_data:
datasets[phase].gen_data()
else:
datasets[phase].load_data()
if args.gen_data:
print("Preprocessing data ...")
os.system('python preprocess_data.py --env ' + args.env)
args.stat = datasets['train'].stat
class ShuffledDataset(Dataset):
def __init__(self,
mother_dataset,
idx,
batch_size):
self.samples_per_rollout = args.time_step - args.len_seq
self.mother = mother_dataset
self.n_rollout = mother_dataset.n_rollout // args.n_splits
self.idx = idx
self.prepared_names = ['attrs', 'states', 'actions', 'rel_attrs']
self.batch_size = batch_size
self.build_table()
def __len__(self):
return self.n_rollout * self.samples_per_rollout
def build_table(self):
assert self.n_rollout % args.group_size == 0
bs = self.batch_size
num_groups = self.n_rollout // args.group_size
sample_list = [[] for _ in range(num_groups)]
for i in range(self.n_rollout):
for j in range(self.samples_per_rollout):
gidx = i // args.group_size
sample_list[gidx].append((i, j))
'''shuffle sample list'''
for i in range(num_groups):
l = sample_list[i]
random.shuffle(l)
'''padding samples in the same group such that the size can be divied by the batch size'''
for i in range(num_groups):
if len(sample_list[i]) % bs > 0:
sample_list[i] += sample_list[i][:bs - len(sample_list[i]) % bs]
'''create batches'''
batch_list = []
for i in range(num_groups):
l = sample_list[i]
for j in range(len(l) // bs):
batch_list.append(l[j * bs:j * bs + bs])
'''merge the batch list to a total sample list'''
random.shuffle(batch_list)
total_list = []
for batch in batch_list:
total_list += batch
self.sample_table = total_list
def __getitem__(self, idx):
# print('dataset', self.idx, 'sample', idx)
idx_rollout = self.sample_table[idx][0] + self.n_rollout * self.idx
idx_timestep = self.sample_table[idx][1]
# prepare input data
seq_data = load_data(self.prepared_names, os.path.join(self.mother.data_dir, str(idx_rollout) + '.rollout.h5'))
seq_data = [d[idx_timestep:idx_timestep + args.len_seq + 1] for d in seq_data]
# prepare fit data
fit_idx = rand_int(0, args.group_size - 1) # new traj idx in group
fit_idx = fit_idx + idx_rollout // args.group_size * args.group_size # new traj idx in global
fit_data = load_data(self.prepared_names, os.path.join(self.mother.data_dir, str(fit_idx) + '.rollout.h5'))
return seq_data, fit_data
class SubPreparedDataset(Dataset):
def __init__(self,
mother_dataset,
idx, ):
self.samples_per_rollout = args.time_step - args.len_seq
self.mother = mother_dataset
self.n_rollout = mother_dataset.n_rollout // args.n_splits
self.idx = idx
self.prepared_names = ['attrs', 'states', 'actions', 'rel_attrs']
def __len__(self):
return self.n_rollout * self.samples_per_rollout
def __getitem__(self, idx):
idx_rollout = idx // self.samples_per_rollout + self.n_rollout * self.idx
idx_timestep = idx % self.samples_per_rollout
# prepare input data
seq_data = load_data(self.prepared_names, os.path.join(self.mother.data_dir, str(idx_rollout) + '.rollout.h5'))
seq_data = [d[idx_timestep:idx_timestep + args.len_seq + 1] for d in seq_data]
# prepare fit data
fit_idx = rand_int(0, args.group_size - 1) # new traj idx in group
fit_idx = fit_idx + idx_rollout // args.group_size * args.group_size # new traj idx in global
fit_data = load_data(self.prepared_names, os.path.join(self.mother.data_dir, str(fit_idx) + '.rollout.h5'))
return seq_data, fit_data
def split_dataset(ds):
assert ds.n_rollout % args.group_size == 0
assert ds.n_rollout % args.n_splits == 0
sub_datasets = [ShuffledDataset(mother_dataset=ds, idx=i, batch_size=args.batch_size) for i in range(args.n_splits)]
return sub_datasets
use_gpu = torch.cuda.is_available()
"""
various number of objects, need mixing datasets
"""
dataloaders = {}
data_n_batches = {}
loaders = {}
for phase in ['train', 'valid']:
loaders[phase] = [DataLoader(
dataset=dataset, batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers, )
for dataset in split_dataset(datasets[phase])]
dataloaders[phase] = lambda: mix_iters(iters=[iter(loader) for loader in loaders[phase]])
num_batches = sum(len(loader) for loader in loaders[phase])
data_n_batches[phase] = num_batches
# Compositional Koopman Operator
model = CompositionalKoopmanOperators(args, residual=False, use_gpu=use_gpu)
# print model #params
print("model #params: %d" % count_parameters(model))
# if resume from a pretrained checkpoint
if args.resume_epoch >= 0:
model_path = os.path.join(args.outf, 'net_epoch_%d_iter_%d.pth' % (args.resume_epoch, args.resume_iter))
print("Loading saved ckp from %s" % model_path)
model.load_state_dict(torch.load(model_path))
# criterion
criterionMSE = nn.MSELoss()
# optimizer
params = model.parameters()
optimizer = optim.Adam(params, lr=args.lr, betas=(args.beta1, 0.999))
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.6, patience=2, verbose=True)
if use_gpu:
model = model.cuda()
criterionMSE = criterionMSE.cuda()
st_epoch = args.resume_epoch if args.resume_epoch > 0 else 0
best_valid_loss = np.inf
log_fout = open(os.path.join(args.outf, 'log_st_epoch_%d.txt' % st_epoch), 'w')
for epoch in range(st_epoch, args.n_epoch):
phases = ['train', 'valid'] if args.eval == 0 else ['valid']
for phase in phases:
model.train(phase == 'train')
meter_loss = AverageMeter()
meter_loss_metric = AverageMeter()
meter_loss_ae = AverageMeter()
meter_loss_pred = AverageMeter()
meter_fit_error = AverageMeter()
meter_dist_g = AverageMeter()
meter_dist_s = AverageMeter()
bar = ProgressBar(max_value=data_n_batches[phase])
loader = dataloaders[phase]()
for i, (seq_data, fit_data) in bar(enumerate(loader)):
attrs, states, actions, rel_attrs = seq_data
attrs_2, states_2, actions_2, rel_attrs_2 = fit_data
# print('attrs', attrs.shape) bs x len_seq x num_obj x attr_dim
# print('states', states.shape) bs x len_seq x num_obj x state_dim
# print('actions', actions.shape) bs x len_seq x num_obj x action_dim
# print('rel_attrs', rel_attrs.shape) bs x len_seq x num_obj x num_obj x rel_dim
if use_gpu:
attrs_2, states_2, actions_2, rel_attrs_2 = [x.cuda() for x in fit_data]
fit_data = [attrs_2, states_2, actions_2, rel_attrs_2]
with torch.set_grad_enabled(phase == 'train'):
if use_gpu:
attrs, states, actions, rel_attrs = [x.cuda() for x in seq_data]
data = [attrs, states, actions, rel_attrs]
T = args.len_seq
bs = len(attrs)
"""
flatten fit data
"""
attrs_flat = get_flat(attrs_2)
states_flat = get_flat(states_2)
actions_flat = get_flat(actions_2)
rel_attrs_flat = get_flat(rel_attrs_2)
g = model.to_g(attrs_flat, states_flat, rel_attrs_flat, args.pstep)
g = g.view(torch.Size([bs, args.time_step]) + g.size()[1:])
"""
fit A with fit data
!!! need to force that rel_attrs in one group to be the same !!!
"""
G_tilde = g[:, :-1]
H_tilde = g[:, 1:]
U_left = actions_2[:, :-1]
G_tilde = get_flat(G_tilde, keep_dim=True)
H_tilde = get_flat(H_tilde, keep_dim=True)
U_left = get_flat(U_left, keep_dim=True)
A, B, fit_err = model.system_identify(G=G_tilde, H=H_tilde, U=U_left,
rel_attrs=rel_attrs[:1, 0], I_factor=args.I_factor)
model.A = model.A.repeat(bs, 1, 1)
model.B = model.B.repeat(bs, 1, 1)
meter_fit_error.update(fit_err.item(), bs)
"""
forward on sequential data
"""
attrs_flat = get_flat(attrs)
states_flat = get_flat(states)
actions_flat = get_flat(actions)
rel_attrs_flat = get_flat(rel_attrs)
g = model.to_g(attrs_flat, states_flat, rel_attrs_flat, args.pstep)
permu = np.random.permutation(bs * (T + 1))
split_0 = permu[:bs * (T + 1) // 2]
split_1 = permu[bs * (T + 1) // 2:]
dist_g = torch.mean((g[split_0] - g[split_1]) ** 2, dim=(1, 2))
dist_s = torch.mean((states_flat[split_0] - states_flat[split_1]) ** 2, dim=(1, 2))
scaling_factor = 10
loss_metric = torch.abs(dist_g * scaling_factor - dist_s).mean()
g = g.view(torch.Size([bs, T + 1]) + g.size()[1:])
"""
rollout 0 -> 1 : T + 1
"""
U_for_pred = actions[:, : T]
G_for_pred = model.simulate(T=T, g=g[:, 0], u_seq=U_for_pred, rel_attrs=rel_attrs[:, 0])
''' rollout time: T // 2 + 1, T '''
data_for_ae = [x[:, :T + 1] for x in data]
data_for_pred = [x[:, 1:T + 1] for x in data]
# decode state for auto-encoding
''' BT x N x 4 '''
attrs_for_ae_flat = get_flat(data_for_ae[0])
rel_attrs_for_ae_flat = get_flat(data_for_ae[3])
decode_s_for_ae = model.to_s(attrs=attrs_for_ae_flat, gcodes=get_flat(g[:, :T + 1]),
rel_attrs=rel_attrs_for_ae_flat, pstep=args.pstep)
# decode state for prediction
''' BT x N x 4 '''
attrs_for_pred_flat = get_flat(data_for_pred[0])
rel_attrs_for_pred_flat = get_flat(data_for_pred[3])
decode_s_for_pred = model.to_s(attrs=attrs_for_pred_flat, gcodes=get_flat(G_for_pred),
rel_attrs=rel_attrs_for_pred_flat, pstep=args.pstep)
loss_auto_encode = F.l1_loss(
decode_s_for_ae, states[:, :T + 1].reshape(decode_s_for_ae.shape))
loss_prediction = F.l1_loss(
decode_s_for_pred, states[:, 1:].reshape(decode_s_for_pred.shape))
loss = loss_auto_encode + loss_prediction + loss_metric * args.lambda_loss_metric
meter_loss_metric.update(loss_metric.item(), bs)
meter_loss_ae.update(loss_auto_encode.item(), bs)
meter_loss_pred.update(loss_prediction.item(), bs)
meter_dist_g.update(dist_g.mean().item(), bs)
meter_dist_s.update(dist_s.mean().item(), bs)
'''prediction loss'''
meter_loss.update(loss.item(), bs)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
if i % args.log_per_iter == 0:
log = '%s [%d/%d][%d/%d] Loss: %.6f (%.6f), sysid_error: %.6f (%.6f), loss_ae: %.6f (%.6f), loss_pred: %.6f (%.6f), ' \
'loss_metric: %.6f (%.6f)' % (
phase, epoch, args.n_epoch, i, data_n_batches[phase],
loss.item(), meter_loss.avg,
fit_err.item(), meter_fit_error.avg,
loss_auto_encode.item(), meter_loss_ae.avg,
loss_prediction.item(), meter_loss_pred.avg,
loss_metric.item(), meter_loss_metric.avg,
)
print()
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'train' and i % args.ckp_per_iter == 0:
torch.save(model.state_dict(), '%s/net_epoch_%d_iter_%d.pth' % (args.outf, epoch, i))
log = '%s [%d/%d] Loss: %.4f, Best valid: %.4f' % (phase, epoch, args.n_epoch, meter_loss.avg, best_valid_loss)
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'valid' and not args.eval:
scheduler.step(meter_loss.avg)
if meter_loss.avg < best_valid_loss:
best_valid_loss = meter_loss.avg
torch.save(model.state_dict(), '%s/net_best.pth' % (args.outf))
log_fout.close()