-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patheval.py
197 lines (152 loc) · 6.21 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from config import gen_args
from data import normalize, denormalize
from models.CompositionalKoopmanOperators import CompositionalKoopmanOperators
from models.KoopmanBaselineModel import KoopmanBaseline
from physics_engine import SoftEngine, RopeEngine, SwimEngine
from utils import *
from utils import to_var, to_np, Tee
from progressbar import ProgressBar
import time
args = gen_args()
print_args(args)
'''
args.fit_num is # of trajectories used for SysID
'''
assert args.group_size - 1 >= args.fit_num
data_names = ['attrs', 'states', 'actions']
prepared_names = ['attrs', 'states', 'actions', 'rel_attrs']
data_dir = os.path.join(args.dataf, args.eval_set)
print(f"Load stored dataset statistics from {args.stat_path}!")
stat = load_data(data_names, args.stat_path)
if args.env == 'Rope':
engine = RopeEngine(args.dt, args.state_dim, args.action_dim, args.param_dim)
elif args.env == 'Soft':
engine = SoftEngine(args.dt, args.state_dim, args.action_dim, args.param_dim)
elif args.env == 'Swim':
engine = SwimEngine(args.dt, args.state_dim, args.action_dim, args.param_dim)
else:
assert False
os.system('mkdir -p ' + args.evalf)
log_path = os.path.join(args.evalf, 'log.txt')
tee = Tee(log_path, 'w')
'''
model
'''
# build model
use_gpu = torch.cuda.is_available()
if not args.baseline:
""" Koopman model"""
model = CompositionalKoopmanOperators(args, residual=False, use_gpu=use_gpu)
# load pretrained checkpoint
if args.eval_epoch == -1:
model_path = os.path.join(args.outf, 'net_best.pth')
else:
model_path = os.path.join(args.outf, 'net_epoch_%d_iter_%d.pth' % (args.eval_epoch, args.eval_iter))
print("Loading saved checkpoint from %s" % model_path)
device = torch.device('cuda:0') if use_gpu else torch.device('cpu')
model.load_state_dict(torch.load(model_path,map_location=device))
model.eval()
if use_gpu: model.cuda()
else:
""" Koopman Baselinese """
model = KoopmanBaseline(args)
'''
eval
'''
def get_more_trajectories(roll_idx):
group_idx = roll_idx // args.group_size
offset = group_idx * args.group_size
all_seq = [[], [], [], []]
for i in range(1, args.fit_num + 1):
new_idx = (roll_idx + i - offset) % args.group_size + offset
seq_data = load_data(prepared_names, os.path.join(data_dir, str(new_idx) + '.rollout.h5'))
for j in range(4):
all_seq[j].append(seq_data[j])
all_seq = [np.array(all_seq[j], dtype=np.float32) for j in range(4)]
return all_seq
def eval(idx_rollout, video=True):
print(f'\n=== Forward Simulation on Example {roll_idx} ===')
seq_data = load_data(prepared_names, os.path.join(data_dir, str(idx_rollout) + '.rollout.h5'))
attrs, states, actions, rel_attrs = [to_var(d.copy(), use_gpu=use_gpu) for d in seq_data]
seq_data = denormalize(seq_data, stat)
attrs_gt, states_gt, action_gt = seq_data[:3]
param_file = os.path.join(data_dir, str(idx_rollout // args.group_size) + '.param')
param = torch.load(param_file)
engine.init(param)
'''
fit data
'''
fit_data = get_more_trajectories(roll_idx)
fit_data = [to_var(d, use_gpu=use_gpu) for d in fit_data]
bs = args.fit_num
''' T x N x D (denormalized)'''
states_pred = states_gt.copy()
states_pred[1:] = 0
''' T x N x D (normalized)'''
s_pred = states.clone()
'''
reconstruct loss
'''
attrs_flat = get_flat(fit_data[0])
states_flat = get_flat(fit_data[1])
actions_flat = get_flat(fit_data[2])
rel_attrs_flat = get_flat(fit_data[3])
g = model.to_g(attrs_flat, states_flat, rel_attrs_flat, args.pstep)
g = g.view(torch.Size([bs, args.time_step]) + g.size()[1:])
G_tilde = g[:, :-1]
H_tilde = g[:, 1:]
U_tilde = fit_data[2][:, :-1]
G_tilde = get_flat(G_tilde, keep_dim=True)
H_tilde = get_flat(H_tilde, keep_dim=True)
U_tilde = get_flat(U_tilde, keep_dim=True)
_t = time.time()
A, B, fit_err = model.system_identify(
G=G_tilde, H=H_tilde, U=U_tilde, rel_attrs=fit_data[3][:1, 0], I_factor=args.I_factor)
_t = time.time() - _t
'''
predict
'''
g = model.to_g(attrs, states, rel_attrs, args.pstep)
pred_g = None
for step in range(0, args.time_step - 1):
# prepare input data
if step == 0:
current_s = states[step:step + 1]
current_g = g[step:step + 1]
states_pred[step] = states_gt[step]
else:
'''current state'''
if args.eval_type == 'valid':
current_s = states[step:step + 1]
elif args.eval_type == 'rollout':
current_s = s_pred[step:step + 1]
'''current g'''
if args.eval_type in {'valid', 'rollout'}:
current_g = model.to_g(attrs[step:step + 1], current_s, rel_attrs[step:step + 1], args.pstep)
elif args.eval_type == 'koopman':
current_g = pred_g
'''next g'''
pred_g = model.step(g=current_g, u=actions[step:step + 1], rel_attrs=rel_attrs[step:step + 1])
'''decode s'''
pred_s = model.to_s(attrs=attrs[step:step + 1], gcodes=pred_g,
rel_attrs=rel_attrs[step:step + 1], pstep=args.pstep)
pred_s_np_denorm = denormalize([to_np(pred_s)], [stat[1]])[0]
states_pred[step + 1:step + 2] = pred_s_np_denorm
d = args.state_dim // 2
states_pred[step + 1:step + 2, :, :d] = states_pred[step:step + 1, :, :d] + \
args.dt * states_pred[step + 1:step + 2, :, d:]
s_pred_next = normalize([states_pred[step + 1:step + 2]], [stat[1]])[0]
s_pred[step + 1:step + 2] = to_var(s_pred_next, use_gpu=use_gpu)
if video:
engine.render(states_pred, seq_data[2], param, act_scale=args.act_scale, video=True, image=True,
path=os.path.join(args.evalf, str(idx_rollout) + '.pred'),
states_gt=states_gt)
if __name__ == '__main__':
num_train = int(args.n_rollout * args.train_valid_ratio)
num_valid = args.n_rollout - num_train
ls_rollout_idx = np.arange(0, num_valid, num_valid // args.n_splits)
if args.demo:
ls_rollout_idx = np.arange(8) * 25
for roll_idx in ls_rollout_idx:
eval(roll_idx)