-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathmujoco_physics.py
148 lines (111 loc) · 4.21 KB
/
mujoco_physics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
###########################
# Latent ODEs for Irregularly-Sampled Time Series
# Authors: Yulia Rubanova and Ricky Chen
###########################
import os
import numpy as np
import torch
from lib.utils import get_dict_template
import lib.utils as utils
from torchvision.datasets.utils import download_url
class HopperPhysics(object):
T = 200
D = 14
n_training_samples = 10000
training_file = 'training.pt'
def __init__(self, root, download = True, generate=False, device = torch.device("cpu")):
self.root = root
if download:
self._download()
if generate:
self._generate_dataset()
if not self._check_exists():
raise RuntimeError('Dataset not found.' + ' You can use download=True to download it')
data_file = os.path.join(self.data_folder, self.training_file)
self.data = torch.Tensor(torch.load(data_file)).to(device)
self.data, self.data_min, self.data_max = utils.normalize_data(self.data)
self.device =device
def visualize(self, traj, plot_name = 'traj', dirname='hopper_imgs', video_name = None):
r"""Generates images of the trajectory and stores them as <dirname>/traj<index>-<t>.jpg"""
T, D = traj.size()
traj = traj.cpu() * self.data_max.cpu() + self.data_min.cpu()
try:
from dm_control import suite # noqa: F401
except ImportError as e:
raise Exception('Deepmind Control Suite is required to visualize the dataset.') from e
try:
from PIL import Image # noqa: F401
except ImportError as e:
raise Exception('PIL is required to visualize the dataset.') from e
def save_image(data, filename):
im = Image.fromarray(data)
im.save(filename)
os.makedirs(dirname, exist_ok=True)
env = suite.load('hopper', 'stand')
physics = env.physics
for t in range(T):
with physics.reset_context():
physics.data.qpos[:] = traj[t, :D // 2]
physics.data.qvel[:] = traj[t, D // 2:]
save_image(
physics.render(height=480, width=640, camera_id=0),
os.path.join(dirname, plot_name + '-{:03d}.jpg'.format(t))
)
def _generate_dataset(self):
if self._check_exists():
return
os.makedirs(self.data_folder, exist_ok=True)
print('Generating dataset...')
train_data = self._generate_random_trajectories(self.n_training_samples)
torch.save(train_data, os.path.join(self.data_folder, self.training_file))
def _download(self):
if self._check_exists():
return
print("Downloading the dataset [325MB] ...")
os.makedirs(self.data_folder, exist_ok=True)
url = "http://www.cs.toronto.edu/~rtqichen/datasets/HopperPhysics/training.pt"
download_url(url, self.data_folder, "training.pt", None)
def _generate_random_trajectories(self, n_samples):
try:
from dm_control import suite # noqa: F401
except ImportError as e:
raise Exception('Deepmind Control Suite is required to generate the dataset.') from e
env = suite.load('hopper', 'stand')
physics = env.physics
# Store the state of the RNG to restore later.
st0 = np.random.get_state()
np.random.seed(123)
data = np.zeros((n_samples, self.T, self.D))
for i in range(n_samples):
with physics.reset_context():
# x and z positions of the hopper. We want z > 0 for the hopper to stay above ground.
physics.data.qpos[:2] = np.random.uniform(0, 0.5, size=2)
physics.data.qpos[2:] = np.random.uniform(-2, 2, size=physics.data.qpos[2:].shape)
physics.data.qvel[:] = np.random.uniform(-5, 5, size=physics.data.qvel.shape)
for t in range(self.T):
data[i, t, :self.D // 2] = physics.data.qpos
data[i, t, self.D // 2:] = physics.data.qvel
physics.step()
# Restore RNG.
np.random.set_state(st0)
return data
def _check_exists(self):
return os.path.exists(os.path.join(self.data_folder, self.training_file))
@property
def data_folder(self):
return os.path.join(self.root, self.__class__.__name__)
# def __getitem__(self, index):
# return self.data[index]
def get_dataset(self):
return self.data
def __len__(self):
return len(self.data)
def size(self, ind = None):
if ind is not None:
return self.data.shape[ind]
return self.data.shape
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
return fmt_str