-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_net_ema_only.py
80 lines (64 loc) · 2.41 KB
/
test_net_ema_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import glob
from xmodaler.config import get_cfg
from xmodaler.engine import default_argument_parser, default_setup, launch, build_engine
from xmodaler.modeling import add_config
from xmodaler.engine.hooks import EvalHook
from xmodaler.utils.events import EventStorage
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
tmp_cfg = cfg.load_from_file_tmp(args.config_file)
add_config(cfg, tmp_cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if args.debug:
cfg.DEBUG = True
cfg.DATALOADER.NUM_WORKERS = 0
cfg.DATALOADER.TRAIN_BATCH_SIZE = 2
cfg.DATALOADER.TEST_BATCH_SIZE = 4
cfg.DATALOADER.FEATS_FOLDER = '../open_source_dataset/mscoco_dataset/features/up_down_100'
if args.eval_only:
cfg.DATALOADER.TEST_BATCH_SIZE = 4
cfg.freeze()
default_setup(cfg, args)
return cfg
def test_one(trainer, weights_path, args):
trainer.checkpointer.load(weights_path) # checkpointables is None in order to use default checkpointables
next_iter = trainer.iter + 1
epoch = int(os.path.basename(weights_path).split('_')[2])
with EventStorage(next_iter) as trainer.storage:
if trainer.val_data_loader is not None:
for hook in trainer._hooks:
if isinstance(hook, EvalHook) and hook._stage == 'val_ema':
hook._do_eval(epoch=epoch)
if trainer.test_data_loader is not None:
for hook in trainer._hooks:
if isinstance(hook, EvalHook) and hook._stage == 'test_ema':
hook._do_eval(epoch=epoch)
def main(args):
cfg = setup(args)
trainer = build_engine(cfg)
weights_path = cfg.MODEL.WEIGHTS
if os.path.isdir(weights_path):
weights_paths = glob.glob(os.path.join(weights_path, "*.pth"))
weights_paths = sorted(weights_paths)
for weights_path in weights_paths:
test_one(trainer, weights_path, args)
elif os.path.isfile(weights_path):
test_one(trainer, weights_path, args)
else:
raise NotImplementedError
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)