-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
348 lines (269 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from transformers import ElectraTokenizer, AutoModel
import torch
import pandas as pd
import argparse
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torch import nn
import torch.nn.functional as F
import logging
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
from tensorboardX import SummaryWriter
from sklearn import metrics
import time
def classifiction_metric(preds, labels, label_list):
acc = metrics.accuracy_score(labels, preds)
labels_list = [i for i in range(label_list)]
report = metrics.classification_report(
labels, preds, labels=labels_list, target_names=labels_list, digits=4, output_dict=True)
return acc, report
def statistics(tokenizer, df_train):
import seaborn as sns
import matplotlib.pyplot as plt
token_lens = []
for txt in df_train['content']:
tokens = tokenizer(txt)
token_lens.append(len(tokens['input_ids']))
sns.distplot(token_lens)
plt.xlim([0, 300])
plt.xlabel('Token count')
plt.show()
class TQReviewDataset(Dataset):
def __init__(self, titles, reviews, targets, tokenizer, max_len, config):
self.titles = titles
self.reviews = reviews
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
self.config = config
def __len__(self):
return len(self.reviews)
def __getitem__(self, item):
title = str(self.titles[item])
review = str(self.reviews[item])
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
title,
review,
add_special_tokens=True,
truncation=True,
padding='max_length',
max_length=self.max_len,
return_token_type_ids=True,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
return {
'review_text': title + review,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'token_type_ids': encoding['token_type_ids'].flatten(),
'targets': target
}
def create_data_loader(df, tokenizer, args):
ds = TQReviewDataset(
titles= df.title.to_numpy(), # title
reviews=df.content.to_numpy(), # text
targets=df.category.to_numpy(), # single labels
tokenizer=tokenizer,
max_len=args.max_length,
config=args
)
return DataLoader(
ds,
batch_size=args.batch_size,
num_workers=0
)
# 评估模型
def evaluate(model, iterator, device, criterion, config):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in iterator:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
labels = batch["targets"].to(device)
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = criterion(output.view(-1, config.classes_number), labels)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class ElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout)
self.out_proj = nn.Linear(config.hidden_size, config.classes_number)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = F.gelu(x) # although BERT uses tanh here, it seems Electra authors used gelu here
x = self.dropout(x)
x = self.out_proj(x)
return x
class NewsClf(nn.Module):
def __init__(self, config):
super(NewsClf, self).__init__()
self.electra = AutoModel.from_pretrained(config.model, return_dict=True)
self.classifier = ElectraClassificationHead(config)
def forward(self, input_ids, attention_mask, token_type_ids):
pooled_output = self.electra(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask
)
output = pooled_output.last_hidden_state
logits = self.classifier(output)
return logits
# fine tune
def run_fine_tune(args):
# load data
df_train = pd.read_csv(args.data_dir + '/train.csv')
df_val = pd.read_csv(args.data_dir + '/val.csv')
df_test = pd.read_csv(args.data_dir + '/test.csv')
logging.info('len of df_train: %d' % len(df_train))
logging.info('len of df_val: %d' % len(df_val))
logging.info('len of df_test: %d' % len(df_test))
# load label
df_label = pd.read_csv('./dict.csv', usecols=['label'])
label_list = df_label.label.tolist()
logging.info('label list {}'.format(label_list))
tokenizer = ElectraTokenizer.from_pretrained(args.model)
# set random seed
random_seed = 1432
np.random.seed(random_seed)
torch.manual_seed(random_seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print('device: %s' % device)
logging.info("device: %s" % device)
logging.info("loader the data and processed...")
train_data_loader = create_data_loader(df_train, tokenizer, args)
val_data_loader = create_data_loader(df_val, tokenizer, args)
test_data_loader = create_data_loader(df_test, tokenizer, args)
# initialize model
model = NewsClf(args)
model = model.to(device)
logging.info('model parameters: {}'.format(count_parameters(model)))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
criterion = nn.CrossEntropyLoss().to(device)
def poly_scheduler(epoch, num_epochs=args.epoch, power=0.95):
return (1 - epoch / num_epochs) ** power
scheduler = LambdaLR(optimizer, lr_lambda=poly_scheduler)
global_steps = 0
best_loss = float('inf')
writer = SummaryWriter(
log_dir=args.logs + time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime(time.time())))
# start training
logging.info('start training ...')
for epoch in range(args.epoch):
start_time = time.time()
logging.info('(' + str(epoch) + '/' + str(args.epoch) + ')')
model = model.train()
epoch_loss = 0
train_steps = 0
for d in train_data_loader:
optimizer.zero_grad()
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
token_type_ids = d["token_type_ids"].to(device)
labels = d["targets"].to(device)
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = criterion(output.view(-1, args.classes_number), labels)
epoch_loss += loss.item()
loss.backward()
train_steps += 1
global_steps += 1
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if global_steps % args.print_step == 0:
train_loss = epoch_loss / train_steps
val_loss = evaluate(model, val_data_loader, device, criterion, args)
c = global_steps // args.print_step
writer.add_scalar("loss/train", train_loss, c)
writer.add_scalar("loss/val", val_loss, c)
logging.info("loss/train: %0.3f, %d" % (train_loss, c))
logging.info("loss/val: %0.3f, %d" % (val_loss, c))
if val_loss < best_loss:
best_loss = val_loss
logging.info("-" * 50)
logging.info('|| best loss: %0.3f ' % best_loss)
torch.save({'epoch': epoch,
'model_state_dict': model.state_dict(),
'loss': best_loss}, args.save_dir)
model.train()
logging.warning('learning rate: {}'.format(optimizer.param_groups[0]['lr']))
scheduler.step()
secs = int(time.time() - start_time)
mins = secs / 60
secs = secs % 60
logging.info("Epoch: {} | time in {} minutes, {} seconds".format(epoch + 1, mins, secs))
logging.info('finished train')
test_loss = evaluate(model, test_data_loader, device)
logging.info("-" * 50)
logging.info("|| test loss: %0.3f " % test_loss)
# evaluate model
def run_evaluate(args):
df_test = pd.read_csv(args.data_dir + '/test.csv')
df_label = pd.read_csv('./dict.csv', usecols=['label'])
labels = df_label.label.tolist()
logging.info('label list {}'.format(labels))
tokenizer = ElectraTokenizer.from_pretrained(args.model)
test_data_loader = create_data_loader(df_test, tokenizer, args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = NewsClf(args)
model = model.to(device)
dict = torch.load(args.save_dir, map_location=device)
model.load_state_dict(dict['model_state_dict'])
print('best model epoch:', dict['epoch'])
model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for batch in test_data_loader:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
labels = batch["targets"].to(device)
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
label = labels.detach().cpu().numpy()
preds = output.detach().cpu().numpy()
preds = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, preds)
all_labels = np.append(all_labels, label)
print(classifiction_metric(all_preds, all_labels, args.classes_number))
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--data-dir", default='./data', help="新闻数据文件")
parser.add_argument("--logs", default='./logs/', help="Location of logs files.")
parser.add_argument("--save-dir", default='./models/news_clf_v1.1.pt', help="models files.")
parser.add_argument("--max-length", default=512)
parser.add_argument("--batch-size", default=32) # 256 or 128
parser.add_argument("--epoch", default=15)
parser.add_argument("--clip", default=10)
parser.add_argument("--learning-rate", default=6e-5)
parser.add_argument("--print-step", default=100) # 100
parser.add_argument("--classes-number", default=38)
parser.add_argument("--dropout", default=0.2)
parser.add_argument("--model",
default="hfl/chinese-electra-base-discriminator") # hfl/chinese-electra-base-discriminator
parser.add_argument("--hidden-size", default=768) # 768 or 256
parser.add_argument("--train", default=True)
args = parser.parse_args()
if args.train:
logging.basicConfig(filemode='w', filename="./logs/train.txt", level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
logging.info('training...')
run_fine_tune(args)
else:
logging.basicConfig(filemode='w', filename="./logs/evaluate.txt", level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
logging.info('evaluate...')
run_evaluate(args)
if __name__ == '__main__':
main()