-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainingArgs.py
1162 lines (1042 loc) · 57.7 KB
/
trainingArgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import json
import math
import os
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional
from transformers.deepspeed import is_deepspeed_available
from transformers.integrations import get_available_reporting_integrations
from transformers.debug_utils import DebugOption
from transformers.file_utils import (
cached_property,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_torch_available,
is_torch_tpu_available,
torch_required,
)
from transformers.trainer_utils import EvaluationStrategy, IntervalStrategy, SchedulerType, ShardedDDPOption
from transformers.utils import logging
if is_torch_available():
import torch
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
if is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.distributed as sm_dist
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
smp.init()
logger = logging.get_logger(__name__)
log_levels = logging.get_log_levels_dict().copy()
trainer_log_levels = dict(**log_levels, passive=-1)
def default_logdir() -> str:
"""
Same default as PyTorch
"""
import socket
from datetime import datetime
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
return os.path.join("runs", current_time + "_" + socket.gethostname())
@dataclass
class TrainingArguments:
"""
TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
itself**.
Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse
<https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command
line.
Parameters:
output_dir (:obj:`str`):
The output directory where the model predictions and checkpoints will be written.
overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, overwrite the content of the output directory. Use this to continue training if
:obj:`output_dir` points to a checkpoint directory.
do_train (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's
intended to be used by your training/evaluation scripts instead. See the `example scripts
<https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
do_eval (:obj:`bool`, `optional`):
Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if
:obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run predictions on the test set or not. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
The evaluation strategy to adopt during training. Possible values are:
* :obj:`"no"`: No evaluation is done during training.
* :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
* :obj:`"epoch"`: Evaluation is done at the end of each epoch.
prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
When performing evaluation and generating predictions, only returns the loss.
per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
The batch size per GPU/TPU core/CPU for training.
per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8):
The batch size per GPU/TPU core/CPU for evaluation.
gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1):
Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
.. warning::
When using gradient accumulation, one step is counted as one step with backward pass. Therefore,
logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training
examples.
eval_accumulation_steps (:obj:`int`, `optional`):
Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but
requires more memory).
learning_rate (:obj:`float`, `optional`, defaults to 5e-5):
The initial learning rate for :class:`~transformers.AdamW` optimizer.
weight_decay (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in
:class:`~transformers.AdamW` optimizer.
adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
The beta1 hyperparameter for the :class:`~transformers.AdamW` optimizer.
adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
The beta2 hyperparameter for the :class:`~transformers.AdamW` optimizer.
adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
The epsilon hyperparameter for the :class:`~transformers.AdamW` optimizer.
max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
Maximum gradient norm (for gradient clipping).
num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
the last epoch before stopping training).
max_steps (:obj:`int`, `optional`, defaults to -1):
If set to a positive number, the total number of training steps to perform. Overrides
:obj:`num_train_epochs`.
lr_scheduler_type (:obj:`str` or :class:`~transformers.SchedulerType`, `optional`, defaults to :obj:`"linear"`):
The scheduler type to use. See the documentation of :class:`~transformers.SchedulerType` for all possible
values.
warmup_ratio (:obj:`float`, `optional`, defaults to 0.0):
Ratio of total training steps used for a linear warmup from 0 to :obj:`learning_rate`.
warmup_steps (:obj:`int`, `optional`, defaults to 0):
Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. Overrides any effect of
:obj:`warmup_ratio`.
log_level (:obj:`str`, `optional`, defaults to ``passive``):
Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the
application set the level.
log_level_replica (:obj:`str`, `optional`, defaults to ``passive``):
Logger log level to use on replicas. Same choices as ``log_level``"
log_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`True`):
In multinode distributed training, whether to log using :obj:`log_level` once per node, or only on the main
node.
logging_dir (:obj:`str`, `optional`):
`TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to
`output_dir/runs/**CURRENT_DATETIME_HOSTNAME**`.
logging_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
The logging strategy to adopt during training. Possible values are:
* :obj:`"no"`: No logging is done during training.
* :obj:`"epoch"`: Logging is done at the end of each epoch.
* :obj:`"steps"`: Logging is done every :obj:`logging_steps`.
logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to log and evaluate the first :obj:`global_step` or not.
logging_steps (:obj:`int`, `optional`, defaults to 500):
Number of update steps between two logs if :obj:`logging_strategy="steps"`.
save_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"steps"`):
The checkpoint save strategy to adopt during training. Possible values are:
* :obj:`"no"`: No save is done during training.
* :obj:`"epoch"`: Save is done at the end of each epoch.
* :obj:`"steps"`: Save is done every :obj:`save_steps`.
save_steps (:obj:`int`, `optional`, defaults to 500):
Number of updates steps before two checkpoint saves if :obj:`save_strategy="steps"`.
save_total_limit (:obj:`int`, `optional`):
If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
:obj:`output_dir`.
save_on_each_node (:obj:`bool`, `optional`, defaults to :obj:`False`):
When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
the main one.
This should not be activated when the different nodes use the same storage as the files will be saved with
the same names for each node.
no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to not use CUDA even when it is available or not.
seed (:obj:`int`, `optional`, defaults to 42):
Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
:func:`~transformers.Trainer.model_init` function to instantiate the model if it has some randomly
initialized parameters.
fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to use 16-bit (mixed) precision training instead of 32-bit training.
fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'):
For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__.
fp16_backend (:obj:`str`, `optional`, defaults to :obj:`"auto"`):
The backend to use for mixed precision training. Must be one of :obj:`"auto"`, :obj:`"amp"` or
:obj:`"apex"`. :obj:`"auto"` will use AMP or APEX depending on the PyTorch version detected, while the
other choices will force the requested backend.
fp16_full_eval (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to use full 16-bit precision evaluation instead of 32-bit. This will be faster and save memory but
can harm metric values.
local_rank (:obj:`int`, `optional`, defaults to -1):
Rank of the process during distributed training.
tpu_num_cores (:obj:`int`, `optional`):
When training on TPU, the number of TPU cores (automatically passed by launcher script).
dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
or not.
eval_steps (:obj:`int`, `optional`):
Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the
same value as :obj:`logging_steps` if not set.
dataloader_num_workers (:obj:`int`, `optional`, defaults to 0):
Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
main process.
past_index (:obj:`int`, `optional`, defaults to -1):
Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc:`XLNet <../model_doc/xlnet>` can
make use of the past hidden states for their predictions. If this argument is set to a positive int, the
``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model
at the next training step under the keyword argument ``mems``.
run_name (:obj:`str`, `optional`):
A descriptor for the run. Typically used for `wandb <https://www.wandb.com/>`_ logging.
disable_tqdm (:obj:`bool`, `optional`):
Whether or not to disable the tqdm progress bars and table of metrics produced by
:class:`~transformers.notebook.NotebookTrainingTracker` in Jupyter Notebooks. Will default to :obj:`True`
if the logging level is set to warn or lower (default), :obj:`False` otherwise.
remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`):
If using :obj:`datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the
model forward method.
(Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.)
label_names (:obj:`List[str]`, `optional`):
The list of keys in your dictionary of inputs that correspond to the labels.
Will eventually default to :obj:`["labels"]` except if the model used is one of the
:obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions",
"end_positions"]`.
load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to load the best model found during training at the end of training.
.. note::
When set to :obj:`True`, the parameters :obj:`save_strategy` needs to be the same as
:obj:`eval_strategy`, and in the case it is "steps", :obj:`save_steps` must be a round multiple of
:obj:`eval_steps`.
metric_for_best_model (:obj:`str`, `optional`):
Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different
models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`.
Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation
loss).
If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to
:obj:`False` if your metric is better when lower.
greater_is_better (:obj:`bool`, `optional`):
Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better
models should have a greater metric or not. Will default to:
- :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or
:obj:`"eval_loss"`.
- :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`.
ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`):
When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping
step can take a long time) but will not yield the same results as the interrupted training would have.
sharded_ddp (:obj:`bool`, :obj:`str` or list of :class:`~transformers.trainer_utils.ShardedDDPOption`, `optional`, defaults to :obj:`False`):
Use Sharded DDP training from `FairScale <https://github.com/facebookresearch/fairscale>`__ (in distributed
training only). This is an experimental feature.
A list of options along the following:
- :obj:`"simple"`: to use first instance of sharded DDP released by fairscale (:obj:`ShardedDDP`) similar
to ZeRO-2.
- :obj:`"zero_dp_2"`: to use the second instance of sharded DPP released by fairscale
(:obj:`FullyShardedDDP`) in Zero-2 mode (with :obj:`reshard_after_forward=False`).
- :obj:`"zero_dp_3"`: to use the second instance of sharded DPP released by fairscale
(:obj:`FullyShardedDDP`) in Zero-3 mode (with :obj:`reshard_after_forward=True`).
- :obj:`"offload"`: to add ZeRO-offload (only compatible with :obj:`"zero_dp_2"` and :obj:`"zero_dp_3"`).
If a string is passed, it will be split on space. If a bool is passed, it will be converted to an empty
list for :obj:`False` and :obj:`["simple"]` for :obj:`True`.
deepspeed (:obj:`str` or :obj:`dict`, `optional`):
Use `Deepspeed <https://github.com/microsoft/deepspeed>`__. This is an experimental feature and its API may
evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
``ds_config.json``) or an already loaded json file as a :obj:`dict`"
label_smoothing_factor (:obj:`float`, `optional`, defaults to 0.0):
The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
labels are changed from 0s and 1s to :obj:`label_smoothing_factor/num_labels` and :obj:`1 -
label_smoothing_factor + label_smoothing_factor/num_labels` respectively.
debug (:obj:`str` or list of :class:`~transformers.debug_utils.DebugOption`, `optional`, defaults to :obj:`""`):
Enable one or more debug features. This is an experimental feature.
Possible options are:
- :obj:`"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that
led to the event
- :obj:`"tpu_metrics_debug"`: print debug metrics on TPU
The options should be separated by whitespaces.
adafactor (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the :class:`~transformers.Adafactor` optimizer instead of
:class:`~transformers.AdamW`.
group_by_length (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to group together samples of roughly the same length in the training dataset (to minimize
padding applied and be more efficient). Only useful if applying dynamic padding.
length_column_name (:obj:`str`, `optional`, defaults to :obj:`"length"`):
Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
than computing them on train startup. Ignored unless :obj:`group_by_length` is :obj:`True` and the dataset
is an instance of :obj:`Dataset`.
report_to (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`"all"`):
The list of integrations to report the results and logs to. Supported platforms are :obj:`"azure_ml"`,
:obj:`"comet_ml"`, :obj:`"mlflow"`, :obj:`"tensorboard"` and :obj:`"wandb"`. Use :obj:`"all"` to report to
all integrations installed, :obj:`"none"` for no integrations.
ddp_find_unused_parameters (:obj:`bool`, `optional`):
When using distributed training, the value of the flag :obj:`find_unused_parameters` passed to
:obj:`DistributedDataParallel`. Will default to :obj:`False` if gradient checkpointing is used, :obj:`True`
otherwise.
dataloader_pin_memory (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether you want to pin memory in data loaders or not. Will default to :obj:`True`.
skip_memory_metrics (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
down the training and evaluation speed.
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to upload the trained model to the hub after training. If this is activated, and
:obj:`output_dir` exists, it needs to be a local clone of the repository to which the
:class:`~transformers.Trainer` will be pushed.
resume_from_checkpoint (:obj:`str`, `optional`):
The path to a folder with a valid checkpoint for your model. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
push_to_hub_model_id (:obj:`str`, `optional`):
The name of the repository to which push the :class:`~transformers.Trainer` when :obj:`push_to_hub=True`.
Will default to the name of :obj:`output_dir`.
push_to_hub_organization (:obj:`str`, `optional`):
The name of the organization in with to which push the :class:`~transformers.Trainer`.
push_to_hub_token (:obj:`str`, `optional`):
The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
:obj:`huggingface-cli login`.
"""
output_dir: str = field(
default="./output",
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
overwrite_output_dir: bool = field(
default=True,
metadata={
"help": (
"Overwrite the content of the output directory."
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(
default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(default=True, metadata={"help": "Whether to run eval on the dev set."})
do_predict: bool = field(default=True, metadata={"help": "Whether to run predictions on the test set."})
evaluation_strategy: IntervalStrategy = field(
default="steps",
metadata={"help": "The evaluation strategy to use."},
)
prediction_loss_only: bool = field(
default=False,
metadata={"help": "When performing evaluation and predictions, only returns the loss."},
)
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
per_gpu_train_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. "
"Batch size per GPU/TPU core/CPU for training."
},
)
per_gpu_eval_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred."
"Batch size per GPU/TPU core/CPU for evaluation."
},
)
gradient_accumulation_steps: int = field(
default=1,
metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."},
)
eval_accumulation_steps: Optional[int] = field(
default=None,
metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."},
)
learning_rate: float = field(default=1e-4, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
num_train_epochs: float = field(default=16.0, metadata={"help": "Total number of training epochs to perform."})
max_steps: int = field(
default=-1,
metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."},
)
lr_scheduler_type: SchedulerType = field(
default="linear",
metadata={"help": "The scheduler type to use."},
)
warmup_ratio: float = field(
default=0.0, metadata={"help": "Linear warmup over warmup_ratio fraction of total steps."}
)
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
log_level: Optional[str] = field(
default="passive",
metadata={
"help": "Logger log level to use on the main node. Possible choices are the log levels as strings: 'debug', 'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and lets the application set the level. Defaults to 'passive'.",
"choices": trainer_log_levels.keys(),
},
)
log_level_replica: Optional[str] = field(
default="passive",
metadata={
"help": "Logger log level to use on replica nodes. Same choices and defaults as ``log_level``",
"choices": trainer_log_levels.keys(),
},
)
log_on_each_node: bool = field(
default=True,
metadata={
"help": "When doing a multinode distributed training, whether to log once per node or just once on the main node."
},
)
logging_dir: Optional[str] = field(default=None, metadata={"help": "Tensorboard log dir."})
logging_strategy: IntervalStrategy = field(
default="steps",
metadata={"help": "The logging strategy to use."},
)
logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"})
logging_steps: int = field(default=1000, metadata={"help": "Log every X updates steps."})
save_strategy: IntervalStrategy = field(
default="steps",
metadata={"help": "The checkpoint save strategy to use."},
)
save_steps: int = field(default=1000, metadata={"help": "Save checkpoint every X updates steps."})
save_total_limit: Optional[int] = field(
default=None,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
)
},
)
save_on_each_node: bool = field(
default=False,
metadata={
"help": "When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on the main one"
},
)
no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"})
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
fp16: bool = field(
default=False,
metadata={"help": "Whether to use 16-bit (mixed) precision instead of 32-bit"},
)
fp16_opt_level: str = field(
default="O1",
metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
)
},
)
fp16_backend: str = field(
default="auto",
metadata={"help": "The backend to be used for mixed precision.", "choices": ["auto", "amp", "apex"]},
)
fp16_full_eval: bool = field(
default=False,
metadata={"help": "Whether to use full 16-bit precision evaluation instead of 32-bit"},
)
local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"})
tpu_num_cores: Optional[int] = field(
default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"}
)
tpu_metrics_debug: bool = field(
default=False,
metadata={
"help": "Deprecated, the use of `--debug tpu_metrics_debug` is preferred. TPU: Whether to print debug metrics"
},
)
debug: str = field(
default="",
metadata={
"help": "Whether or not to enable debug mode. Current options: "
"`underflow_overflow` (Detect underflow and overflow in activations and weights), "
"`tpu_metrics_debug` (print debug metrics on TPU)."
},
)
dataloader_drop_last: bool = field(
default=True, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."}
)
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
dataloader_num_workers: int = field(
default=0,
metadata={
"help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process."
},
)
past_index: int = field(
default=-1,
metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."},
)
run_name: Optional[str] = field(
default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."}
)
disable_tqdm: Optional[bool] = field(
default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."}
)
remove_unused_columns: Optional[bool] = field(
default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."}
)
label_names: Optional[List[str]] = field(
default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."}
)
load_best_model_at_end: Optional[bool] = field(
default=True,
metadata={"help": "Whether or not to load the best model found during training at the end of training."},
)
metric_for_best_model: Optional[str] = field(
default="rougeL", metadata={"help": "The metric to use to compare two different models."}
)
greater_is_better: Optional[bool] = field(
default=True, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."}
)
ignore_data_skip: bool = field(
default=False,
metadata={
"help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data."
},
)
sharded_ddp: str = field(
default="",
metadata={
"help": "Whether or not to use sharded DDP training (in distributed training only). The base option "
"should be `simple`, `zero_dp_2` or `zero_dp_3` and you can add CPU-offload to `zero_dp_2` or `zero_dp_3` "
"like this: zero_dp_2 offload` or `zero_dp_3 offload`. You can add auto-wrap to `zero_dp_2` or "
"with the same syntax: zero_dp_2 auto_wrap` or `zero_dp_3 auto_wrap`.",
},
)
deepspeed: Optional[str] = field(
default=None,
metadata={
"help": "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already loaded json file as a dict"
},
)
label_smoothing_factor: float = field(
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
)
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
group_by_length: bool = field(
default=False,
metadata={"help": "Whether or not to group samples of roughly the same length together when batching."},
)
length_column_name: Optional[str] = field(
default="length",
metadata={"help": "Column name with precomputed lengths to use when grouping by length."},
)
report_to: Optional[List[str]] = field(
default=None, metadata={"help": "The list of integrations to report the results and logs to."}
)
ddp_find_unused_parameters: Optional[bool] = field(
default=False,
metadata={
"help": "When using distributed training, the value of the flag `find_unused_parameters` passed to "
"`DistributedDataParallel`."
},
)
dataloader_pin_memory: bool = field(
default=True, metadata={"help": "Whether or not to pin memory for DataLoader."}
)
skip_memory_metrics: bool = field(
default=True, metadata={"help": "Whether or not to skip adding of memory profiler reports to metrics."}
)
use_legacy_prediction_loop: bool = field(
default=False, metadata={"help": "Whether or not to use the legacy prediction_loop in the Trainer."}
)
push_to_hub: bool = field(
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
)
resume_from_checkpoint: Optional[str] = field(
default=None,
metadata={"help": "The path to a folder with a valid checkpoint for your model."},
)
push_to_hub_model_id: str = field(
default=None, metadata={"help": "The name of the repository to which push the `Trainer`."}
)
push_to_hub_organization: str = field(
default=None, metadata={"help": "The name of the organization in with to which push the `Trainer`."}
)
push_to_hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
_n_gpu: int = field(init=False, repr=False, default=-1)
mp_parameters: str = field(
default="",
metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in Trainer"},
)
def __post_init__(self):
# Handle --use_env option in torch.distributed.launch (local_rank not passed as an arg then).
# This needs to happen before any call to self.device or self.n_gpu.
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != self.local_rank:
self.local_rank = env_local_rank
# convert to int
self.log_level = trainer_log_levels[self.log_level]
self.log_level_replica = trainer_log_levels[self.log_level_replica]
# expand paths, if not os.makedirs("~/bar") will make directory
# in the current directory instead of the actual home
# see https://github.com/huggingface/transformers/issues/10628
if self.output_dir is not None:
self.output_dir = os.path.expanduser(self.output_dir)
if self.logging_dir is None and self.output_dir is not None:
self.logging_dir = os.path.join(self.output_dir, default_logdir())
if self.logging_dir is not None:
self.logging_dir = os.path.expanduser(self.logging_dir)
if self.disable_tqdm is None:
self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN
if isinstance(self.evaluation_strategy, EvaluationStrategy):
warnings.warn(
"using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `IntervalStrategy` instead",
FutureWarning,
)
# Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it.
self.evaluation_strategy = self.evaluation_strategy.value
self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy)
self.logging_strategy = IntervalStrategy(self.logging_strategy)
self.save_strategy = IntervalStrategy(self.save_strategy)
self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type)
if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO:
self.do_eval = True
# eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero
if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0):
if self.logging_steps > 0:
logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}")
self.eval_steps = self.logging_steps
else:
raise ValueError(
f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or --logging_steps"
)
# logging_steps must be non-zero for logging_strategy that is other than 'no'
if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0:
raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps")
# Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible.
if self.load_best_model_at_end:
if self.evaluation_strategy != self.save_strategy:
raise ValueError(
"--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation "
f"strategy: {self.evaluation_strategy}\n- Save strategy: {self.save_strategy}"
)
if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0:
raise ValueError(
"--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation "
f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}."
)
if self.load_best_model_at_end and self.metric_for_best_model is None:
self.metric_for_best_model = "loss"
if self.greater_is_better is None and self.metric_for_best_model is not None:
self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"]
if self.run_name is None:
self.run_name = self.output_dir
if is_torch_available() and self.device.type != "cuda" and (self.fp16 or self.fp16_full_eval):
raise ValueError(
"Mixed precision training with AMP or APEX (`--fp16`) and FP16 evaluation can only be used on CUDA devices."
)
if self.report_to is None:
logger.info(
"The default value for the training argument `--report_to` will change in v5 (from all installed "
"integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as "
"now. You should start updating your code and make this info disappear :-)."
)
self.report_to = "all"
if self.report_to == "all" or self.report_to == ["all"]:
# Import at runtime to avoid a circular import.
self.report_to = get_available_reporting_integrations()
elif self.report_to == "none" or self.report_to == ["none"]:
self.report_to = []
elif not isinstance(self.report_to, list):
self.report_to = [self.report_to]
if self.warmup_ratio < 0 or self.warmup_ratio > 1:
raise ValueError("warmup_ratio must lie in range [0,1]")
elif self.warmup_ratio > 0 and self.warmup_steps > 0:
logger.info(
"Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio during training"
)
if isinstance(self.sharded_ddp, bool):
self.sharded_ddp = "simple" if self.sharded_ddp else ""
if isinstance(self.sharded_ddp, str):
self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()]
if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]:
raise ValueError(
"`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or "
'`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.'
)
elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp:
raise ValueError("`--sharded_ddp simple` is not compatible with any other option.")
elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp:
raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.")
if self.tpu_metrics_debug:
warnings.warn(
"using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--debug tpu_metrics_debug` instead",
FutureWarning,
)
self.debug += " tpu_metrics_debug"
self.tpu_metrics_debug = False
if isinstance(self.debug, str):
self.debug = [DebugOption(s) for s in self.debug.split()]
if self.deepspeed:
# - must be run very last in arg parsing, since it will use a lot of these settings.
# - must be run before the model is created.
from transformers.deepspeed import HfTrainerDeepSpeedConfig
# will be used later by the Trainer
# note: leave self.deepspeed unmodified in case a user relies on it not to be modified)
self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed)
self.hf_deepspeed_config.trainer_config_process(self)
if self.push_to_hub_model_id is None:
self.push_to_hub_model_id = Path(self.output_dir).name
def __str__(self):
self_as_dict = asdict(self)
# Remove deprecated arguments. That code should be removed once
# those deprecated arguments are removed from TrainingArguments. (TODO: v5)
del self_as_dict["per_gpu_train_batch_size"]
del self_as_dict["per_gpu_eval_batch_size"]
attrs_as_str = [f"{k}={v},\n" for k, v in sorted(self_as_dict.items())]
return f"{self.__class__.__name__}(\n{''.join(attrs_as_str)})"
__repr__ = __str__
@property
def train_batch_size(self) -> int:
"""
The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training).
"""
if self.per_gpu_train_batch_size:
logger.warning(
"Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future "
"version. Using `--per_device_train_batch_size` is preferred."
)
per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size
train_batch_size = per_device_batch_size * max(1, self.n_gpu)
return train_batch_size
@property
def eval_batch_size(self) -> int:
"""
The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training).
"""
if self.per_gpu_eval_batch_size:
logger.warning(
"Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future "
"version. Using `--per_device_eval_batch_size` is preferred."
)
per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size
eval_batch_size = per_device_batch_size * max(1, self.n_gpu)
return eval_batch_size
@cached_property
@torch_required
def _setup_devices(self) -> "torch.device":
logger.info("PyTorch: setting up devices")
if self.no_cuda:
device = torch.device("cpu")
self._n_gpu = 0
elif is_torch_tpu_available():
device = xm.xla_device()
self._n_gpu = 0
elif is_sagemaker_mp_enabled():
local_rank = smp.local_rank()
device = torch.device("cuda", local_rank)
self._n_gpu = 1
elif is_sagemaker_dp_enabled():
sm_dist.init_process_group()
self.local_rank = sm_dist.get_local_rank()
device = torch.device("cuda", self.local_rank)
self._n_gpu = 1
elif self.deepspeed:
# deepspeed inits torch.distributed internally
if not is_deepspeed_available():
raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.")
import deepspeed
deepspeed.init_distributed()
# workaround for setups like notebooks where the launcher can't be used,
# but deepspeed requires a dist env.
# env LOCAL_RANK could be set manually by the user, or via init_distributed if mpi4py is installed
self.local_rank = int(os.environ.get("LOCAL_RANK", "-1"))
device = torch.device("cuda", self.local_rank)
self._n_gpu = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
self._n_gpu = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
device = torch.device("cuda", self.local_rank)
self._n_gpu = 1
if device.type == "cuda":
torch.cuda.set_device(device)
return device
@property
@torch_required
def device(self) -> "torch.device":
"""
The device used by this process.
"""
return self._setup_devices
@property
@torch_required
def n_gpu(self):
"""
The number of GPUs used by this process.
Note:
This will only be greater than one when you have multiple GPUs available but are not using distributed
training. For distributed training, it will always be 1.
"""
# Make sure `self._n_gpu` is properly setup.
_ = self._setup_devices
return self._n_gpu
@property
@torch_required
def parallel_mode(self):
"""
The current mode used for parallelism if multiple GPUs/TPU cores are available. One of:
- :obj:`ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU).
- :obj:`ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses :obj:`torch.nn.DataParallel`).
- :obj:`ParallelMode.DISTRIBUTED`: several GPUs, each having its own process (uses
:obj:`torch.nn.DistributedDataParallel`).
- :obj:`ParallelMode.TPU`: several TPU cores.
"""
if is_torch_tpu_available():
return ParallelMode.TPU
elif is_sagemaker_mp_enabled():
return ParallelMode.SAGEMAKER_MODEL_PARALLEL
elif is_sagemaker_dp_enabled():
return ParallelMode.SAGEMAKER_DATA_PARALLEL
elif self.local_rank != -1:
return ParallelMode.DISTRIBUTED
elif self.n_gpu > 1:
return ParallelMode.NOT_DISTRIBUTED
else:
return ParallelMode.NOT_PARALLEL
@property
@torch_required
def world_size(self):
"""
The number of processes used in parallel.
"""
if is_torch_tpu_available():
return xm.xrt_world_size()
elif is_sagemaker_mp_enabled():
return smp.dp_size()
elif is_sagemaker_dp_enabled():
return sm_dist.get_world_size()
elif self.local_rank != -1:
return torch.distributed.get_world_size()
return 1
@property
@torch_required
def process_index(self):
"""
The index of the current process used.
"""
if is_torch_tpu_available():
return xm.get_ordinal()
elif is_sagemaker_mp_enabled():
return smp.dp_rank()
elif is_sagemaker_dp_enabled():
return sm_dist.get_rank()
elif self.local_rank != -1:
return torch.distributed.get_rank()
return 0
@property
@torch_required
def local_process_index(self):
"""
The index of the local process used.
"""
if is_torch_tpu_available():
return xm.get_local_ordinal()
elif is_sagemaker_mp_enabled():
return smp.local_rank()
elif is_sagemaker_dp_enabled():
return sm_dist.get_rank()
elif self.local_rank != -1:
return self.local_rank
return 0
@property
def should_log(self):
"""
Whether or not the current process should produce log.
"""
if self.log_on_each_node:
return self.local_process_index == 0
else:
if is_sagemaker_mp_enabled():
return smp.rank() == 0
else:
return self.process_index == 0
@property
def should_save(self):
"""
Whether or not the current process should write to disk, e.g., to save models and checkpoints.
"""
if self.save_on_each_node:
return self.local_process_index == 0
else:
if is_sagemaker_mp_enabled():
return smp.rank() == 0
else:
return self.process_index == 0
def get_process_log_level(self):
"""
Returns the log level to be used depending on whether this process is the main process of node 0, main process
of node non-0, or a non-main process.
For the main process the log level defaults to ``logging.INFO`` unless overridden by ``log_level`` argument.
For the replica processes the log level defaults to ``logging.WARNING`` unless overridden by
``log_level_replica`` argument.