-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar10.py
400 lines (323 loc) · 15 KB
/
train_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""
Based on training script by Wei YANG, 2017
Taken from repo : https://github.com/bearpaw/pytorch-classification
Copyright (c) Wei YANG, 2017
"""
import argparse
import os
import shutil
import time
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import numpy as np
try:
import wandb
got_wandb = True
except ImportError:
got_wandb = False
from utils import Logger, AverageMeter, accuracy, GroupNormCreator
from models import resnet110
from weight_regularization import calc_group_reg_loss
NUM_GROUPS_GN = 32
MIN_NUM_CHANNELS = 4
# Parse arguments
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/100 Training')
# Datasets
parser.add_argument('-d', '--data', help='dataset name', type=str, default='cifar10', choices=['cifar10', 'cifar100'])
parser.add_argument('--data-path', type=str, help='path to folder containing the cifar datasets')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=128, type=int, metavar='N',
help='train batchsize (default: 128)')
parser.add_argument('--test-batch', default=128, type=int, metavar='N',
help='test batchsize (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[100, 150],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default=None, type=str, metavar='PATH',
help='path to save checkpoint. If None, set path according to current time (default: None)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Architecture
parser.add_argument('--norm', default='BN', type=str, help='Normalization layer type', choices=['BN', 'GN'])
# Miscs
parser.add_argument('--print-freq', type=int, default=50, help='print frequency')
parser.add_argument('--seed', type=int, help='manual seed', default=0)
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--wandb-off', action='store_true', default=False)
parser.add_argument('--checkpoint-off', action='store_true', default=False)
parser.add_argument('--notes', type=str, default=None)
# GOR related
parser.add_argument('--reg-type', type=str, help='Set GOR variant', default=None,
choices=['inter', 'intra', None])
parser.add_argument('--ortho-decay', type=float, help='GOR strength (lambda)', default=1e-2)
parser.add_argument('--names-to-reg', type=str, help='If given, only layers with name that matches this string'
'will be regularized. If None, all layer are regularized',
default=None)
parser.add_argument('-n', '--num-groups', type=int, help='Number of regularization groups in GOR',
default=NUM_GROUPS_GN)
args = parser.parse_args()
# Use CUDA
use_cuda = torch.cuda.is_available()
device = 'cuda:0' if use_cuda else 'cpu'
def print_flare(s: str):
print('<' + '=' * 5 + s + '=' * 5 + '>')
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def get_loaders(args):
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.data == 'cifar10':
dataset = datasets.CIFAR10
num_classes = 10
else:
dataset = datasets.CIFAR100
num_classes = 100
trainset = dataset(root=os.path.join(args.data_path, args.data), train=True, download=True,
transform=transform_train)
# Setting seed to loader generator. Each worker process is seeded using seed_worker() method
g = torch.Generator()
g.manual_seed(args.seed)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.train_batch,
shuffle=True,
num_workers=args.workers, worker_init_fn=seed_worker, generator=g)
testset = dataset(root=os.path.join(args.data_path, args.data), train=False, download=False,
transform=transform_test)
val_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch, shuffle=True,
num_workers=args.workers)
return train_loader, val_loader, num_classes
def main():
# Fix random seed
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if use_cuda:
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
best_acc = 0
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
use_chkpt = not args.checkpoint_off
if not use_chkpt:
print_flare('Checkpoints are disabled!')
if args.checkpoint is None:
# Create path according to time
args.checkpoint = os.path.join('checkpoints', time.strftime('%d_%m_%Y-%H_%M_%S'))
os.makedirs(args.checkpoint, exist_ok=True)
args.checkpoint = os.path.abspath(args.checkpoint)
print(f'Log/checkpoint dir is {args.checkpoint}')
use_wandb = got_wandb and not args.wandb_off
if use_wandb:
wandb.init(project='GOR', config=vars(args), notes=args.notes)
wandb.run.log_code(".")
wandb.summary['checkpoint dir'] = os.path.abspath(args.checkpoint)
# Data loading code
train_loader, val_loader, num_classes = get_loaders(args)
# create model
# Set norm type
if args.norm == 'BN':
norm_layer = nn.BatchNorm2d
elif args.norm == 'GN':
norm_layer = GroupNormCreator(NUM_GROUPS_GN, MIN_NUM_CHANNELS)
else:
raise Exception(f'Unsupported norm type {args.norm}')
model = resnet110(norm_layer=norm_layer).to(device)
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.schedule,
last_epoch=args.start_epoch - 1)
# for resnet110 original paper uses lr=0.01 for first 400 mini-batches for warm-up
# then switch back. In this setup it will correspond for first epoch.
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr * 0.1
# Resume
if args.resume:
# Load checkpoint.
print(f'==> Resuming from checkpoint : {args.resume}')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.checkpoint = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume, map_location='cpu')
if 'state_dict' in checkpoint.keys():
# checkpoints contains other data than the model's weights
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
if 'scheduler' in checkpoint.keys():
lr_scheduler.load_state_dict(checkpoint['scheduler'])
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
model.load_state_dict(state_dict)
logger = Logger(os.path.join(args.checkpoint, 'log.txt'))
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.evaluate:
print('\nEvaluation only')
test_loss, test_acc = test(val_loader, model, criterion, use_cuda)
print(' Test Loss: %.8f, Test Acc: %.2f' % (test_loss, test_acc))
return
# Train and val
for epoch in range(start_epoch, args.epochs):
if epoch == 1:
# for resnet110 original paper uses lr=0.01 for first 400 minibatches for warm-up
# then switch back. In this setup it will correspond for first epoch.
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
current_lr = optimizer.param_groups[0]['lr']
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, current_lr))
train_loss, train_acc, reg_loss, class_loss = train(train_loader, model, criterion, optimizer, epoch,
use_cuda, args)
test_loss, test_acc = test(val_loader, model, criterion, use_cuda)
if use_wandb:
# Log training statistics to W&B
log_dict = {'train_loss': train_loss, 'epoch': epoch, 'val_loss': test_loss, 'val acc': test_acc,
'reg_loss': reg_loss, 'classification loss': class_loss,
'lr': current_lr, 'weight_decay': optimizer.param_groups[0]['weight_decay']}
wandb.log(log_dict)
# append logger file
logger.append([current_lr, train_loss, test_loss, train_acc, test_acc])
lr_scheduler.step()
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
if use_chkpt:
is_ddp = isinstance(model, nn.parallel.DistributedDataParallel)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.module.state_dict() if is_ddp else model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'scheduler': lr_scheduler.state_dict()
}, is_best, checkpoint=args.checkpoint)
logger.close()
print('Best acc:')
print(best_acc)
if use_wandb:
wandb.summary['best top1'] = best_acc
wandb.finish()
def train(train_loader, model, criterion, optimizer, epoch, use_cuda, args):
# switch to train mode
model.train()
torch.set_grad_enabled(True)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
reg_loss = AverageMeter()
task_losses = AverageMeter()
end = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
batch_size = inputs.size(0)
if batch_size < args.train_batch:
continue
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
# compute output
outputs = model(inputs)
task_loss = criterion(outputs, targets)
if args.reg_type is not None:
# Calculate GOR loss
ortho_loss = calc_group_reg_loss(model, num_groups=args.num_groups, reg_type=args.reg_type)
loss = task_loss + args.ortho_decay * ortho_loss
else:
loss = task_loss
if torch.isnan(loss) or torch.isinf(loss):
raise Exception(f'Bad loss value, got {loss.item()}. Stopping run.')
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
task_losses.update(task_loss.item(), inputs.shape[0])
if args.reg_type is not None:
reg_loss.update(ortho_loss.item(), inputs.shape[0])
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
if batch_idx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'top1 acc {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, batch_idx, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
return losses.avg, top1.avg, reg_loss.avg, task_losses.avg
def test(val_loader, model, criterion, use_cuda):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
torch.set_grad_enabled(False)
end = time.time()
for batch_idx, (inputs, targets) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
# compute output
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return losses.avg, top1.avg
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
if __name__ == '__main__':
main()