-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodel.py
137 lines (115 loc) · 5.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
class InterNet(nn.Module):
def __init__(self, angRes, n_blocks, n_layers, channels, upscale_factor):
super(InterNet, self).__init__()
# Feature Extraction
self.AngFE = nn.Sequential(
nn.Conv2d(1, channels, kernel_size=int(angRes), stride=int(angRes), padding=0, bias=False))
self.SpaFE = nn.Sequential(
nn.Conv2d(1, channels, kernel_size=3, stride=1, dilation=int(angRes), padding=int(angRes), bias=False))
# Spatial-Angular Interaction
self.CascadeInterBlock = CascadeInterBlock(angRes, n_blocks, n_layers, channels)
# Fusion and Reconstruction
self.BottleNeck = BottleNeck(angRes, n_blocks, channels)
self.ReconBlock = ReconBlock(angRes, channels, upscale_factor)
def forward(self, x):
xa = self.AngFE(x)
xs = self.SpaFE(x)
buffer_a, buffer_s = self.CascadeInterBlock(xa, xs)
buffer_out = self.BottleNeck(buffer_a, buffer_s) + xs
out = self.ReconBlock(buffer_out)
return out
class make_chains(nn.Module):
def __init__(self, angRes, channels):
super(make_chains, self).__init__()
self.Spa2Ang = nn.Conv2d(channels, channels, kernel_size=int(angRes), stride=int(angRes), padding=0, bias=False)
self.Ang2Spa = nn.Sequential(
nn.Conv2d(channels, int(angRes*angRes*channels), kernel_size=1, stride=1, padding=0, bias=False),
nn.PixelShuffle(angRes),
)
self.AngConvSq = nn.Conv2d(2*channels, channels, kernel_size=1, stride=1, padding=0, bias=False)
self.SpaConvSq = nn.Conv2d(2*channels, channels, kernel_size=3, stride=1, dilation=int(angRes),
padding=int(angRes), bias=False)
self.ReLU = nn.ReLU(inplace=True)
def forward(self, xa, xs):
buffer_ang1 = xa
buffer_ang2 = self.ReLU(self.Spa2Ang(xs))
buffer_spa1 = xs
buffer_spa2 = self.Ang2Spa(xa)
buffer_a = torch.cat((buffer_ang1, buffer_ang2), 1)
buffer_s = torch.cat((buffer_spa1, buffer_spa2), 1)
out_a = self.ReLU(self.AngConvSq(buffer_a)) + xa
out_s = self.ReLU(self.SpaConvSq(buffer_s)) + xs
return out_a, out_s
class InterBlock(nn.Module):
def __init__(self, angRes, n_layers, channels):
super(InterBlock, self).__init__()
modules = []
self.n_layers = n_layers
for i in range(n_layers):
modules.append(make_chains(angRes, channels))
self.chained_layers = nn.Sequential(*modules)
def forward(self, xa, xs):
buffer_a = xa
buffer_s = xs
for i in range(self.n_layers):
buffer_a, buffer_s = self.chained_layers[i](buffer_a, buffer_s)
out_a = buffer_a
out_s = buffer_s
return out_a, out_s
class CascadeInterBlock(nn.Module):
def __init__(self, angRes, n_blocks, n_layers, channels):
super(CascadeInterBlock, self).__init__()
self.n_blocks = n_blocks
body = []
for i in range(n_blocks):
body.append(InterBlock(angRes, n_layers, channels))
self.body = nn.Sequential(*body)
def forward(self, buffer_a, buffer_s):
out_a = []
out_s = []
for i in range(self.n_blocks):
buffer_a, buffer_s = self.body[i](buffer_a, buffer_s)
out_a.append(buffer_a)
out_s.append(buffer_s)
return torch.cat(out_a, 1), torch.cat(out_s, 1)
class BottleNeck(nn.Module):
def __init__(self, angRes, n_blocks, channels):
super(BottleNeck, self).__init__()
self.AngBottle = nn.Conv2d(n_blocks*channels, channels, kernel_size=1, stride=1, padding=0, bias=False)
self.Ang2Spa = nn.Sequential(
nn.Conv2d(channels, int(angRes * angRes * channels), kernel_size=1, stride=1, padding=0, bias=False),
nn.PixelShuffle(angRes),
)
self.SpaBottle = nn.Conv2d((n_blocks+1)*channels, channels, kernel_size=3, stride=1, dilation=int(angRes),
padding=int(angRes), bias=False)
self.ReLU = nn.ReLU(inplace=True)
def forward(self, xa, xs):
xa = self.ReLU(self.AngBottle(xa))
xs = torch.cat((xs, self.Ang2Spa(xa)), 1)
out = self.ReLU(self.SpaBottle(xs))
return out
class ReconBlock(nn.Module):
def __init__(self, angRes, channels, upscale_factor):
super(ReconBlock, self).__init__()
self.PreConv = nn.Conv2d(channels, channels * upscale_factor ** 2, kernel_size=3, stride=1,
dilation=int(angRes), padding=int(angRes), bias=False)
self.PixelShuffle = nn.PixelShuffle(upscale_factor)
self.FinalConv = nn.Conv2d(int(channels), 1, kernel_size=1, stride=1, padding=0, bias=False)
self.angRes = angRes
def forward(self, x):
buffer = self.PreConv(x)
bufferSAI_LR = MacroPixel2SAI(buffer, self.angRes)
bufferSAI_HR = self.PixelShuffle(bufferSAI_LR)
out = self.FinalConv(bufferSAI_HR)
return out
def MacroPixel2SAI(x, angRes):
out = []
for i in range(angRes):
out_h = []
for j in range(angRes):
out_h.append(x[:, :, i::angRes, j::angRes])
out.append(torch.cat(out_h, 3))
out = torch.cat(out, 2)
return out