-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmnist_cpl.py
152 lines (121 loc) · 5.77 KB
/
mnist_cpl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# An example on MNIST to introduce how to train and test under CPL
from nets import mnist_net
import functions as func
import numpy as np
import tensorflow as tf
import argparse
import time
import os
import cPickle as pickle
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
FLAGS = None
# compute accuracy on the test dataset
def do_eval(sess, eval_correct, images, labels, test_x, test_y):
true_count = 0.0
test_num = test_y.shape[0]
batch_size = FLAGS.batch_size
batch_num = test_num // batch_size if test_num % batch_size == 0 else test_num // batch_size + 1
for i in range(batch_num):
batch_x = test_x[i*batch_size:(i+1)*batch_size]
batch_y = test_y[i*batch_size:(i+1)*batch_size]
true_count += sess.run(eval_correct, feed_dict={images:batch_x, labels:batch_y})
return true_count / test_num
# initialize the prototype with the mean vector (on the train dataset) of the corresponding class
def compute_centers(sess, add_op, count_op, average_op, images_placeholder, labels_placeholder, train_x, train_y):
train_num = train_y.shape[0]
batch_size = FLAGS.batch_size
batch_num = train_num // batch_size if train_num % batch_size == 0 else train_num // batch_size + 1
for i in range(batch_num):
batch_x = train_x[i*batch_size:(i+1)*batch_size]
batch_y = train_y[i*batch_size:(i+1)*batch_size]
sess.run([add_op, count_op], feed_dict={images_placeholder:batch_x, labels_placeholder:batch_y})
sess.run(average_op)
def run_training():
# load the data
print 150*'*'
with open("mnist.data", "rb") as fid:
dataset = pickle.load(fid)
train_x, train_y = dataset[0]
test_x, test_y = dataset[1]
train_num = train_x.shape[0]
test_num = test_x.shape[0]
# construct the computation graph
images = tf.placeholder(tf.float32, shape=[None,1,28,28])
labels = tf.placeholder(tf.int32, shape=[None])
lr= tf.placeholder(tf.float32)
features, _ = mnist_net(images)
centers = func.construct_center(features, FLAGS.num_classes)
loss = func.dce_loss(features, labels, centers, FLAGS.temp)
eval_correct = func.evaluation(features, labels, centers)
train_op = func.training(loss, lr)
# counts = tf.get_variable('counts', [FLAGS.num_classes], dtype=tf.int32,
# initializer=tf.constant_initializer(0), trainable=False)
# add_op, count_op, average_op = net.init_centers(features, labels, centers, counts)
init = tf.global_variables_initializer()
# init the variables
sess = tf.Session()
sess.run(init)
#compute_centers(sess, add_op, count_op, average_op, images, labels, train_x, train_y)
# run the computation graph (training and test)
epoch = 1
loss_before = np.inf
score_before = 0.0
stopping = 0
index = range(train_num)
np.random.shuffle(index)
batch_size = FLAGS.batch_size
batch_num = train_num//batch_size if train_num % batch_size==0 else train_num//batch_size+1
#saver = tf.train.Saver(max_to_keep=1)
# train the framework with the training data
while stopping<FLAGS.stop:
time1 = time.time()
loss_now = 0.0
score_now = 0.0
for i in range(batch_num):
batch_x = train_x[index[i*batch_size:(i+1)*batch_size]]
batch_y = train_y[index[i*batch_size:(i+1)*batch_size]]
result = sess.run([train_op, loss, eval_correct], feed_dict={images:batch_x,
labels:batch_y, lr:FLAGS.learning_rate})
loss_now += result[1]
score_now += result[2]
score_now /= train_num
print 'epoch {}: training: loss --> {:.3f}, acc --> {:.3f}%'.format(epoch, loss_now, score_now*100)
if loss_now > loss_before or score_now < score_before:
stopping += 1
FLAGS.learning_rate *= FLAGS.decay
print "\033[1;31;40mdecay learning rate {}th time!\033[0m".format(stopping)
loss_before = loss_now
score_before = score_now
#checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
#saver.save(sess, checkpoint_file, global_step=epoch)
epoch += 1
np.random.shuffle(index)
time2 = time.time()
print 'time for this epoch: {:.3f} minutes'.format((time2-time1)/60.0)
# test the framework with the test data
test_score = do_eval(sess, eval_correct, images, labels, test_x, test_y)
print 'accuracy on the test dataset: {:.3f}%'.format(test_score*100)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=0.001, help='initial learning rate')
parser.add_argument('--batch_size', type=int, default=50, help='batch size for training and test')
#parser.add_argument('--log_dir', type=str, default='data/', help='directory to save the data')
parser.add_argument('--stop', type=int, default=3, help='stopping number')
parser.add_argument('--decay', type=float, default=0.3, help='the value to decay the learning rate')
parser.add_argument('--temp', type=float, default=0.5, help='the temperature used for calculating the loss')
parser.add_argument('--gpu', type=int, default=0, help='the gpu id for use')
parser.add_argument('--num_classes', type=int, default=10, help='the number of the classes')
FLAGS, unparsed = parser.parse_known_args()
print 150*'*'
print 'Configuration of the training:'
print 'learning rate:', FLAGS.learning_rate
print 'batch size:', FLAGS.batch_size
print 'stopping:', FLAGS.stop
print 'learning rate decay:', FLAGS.decay
print 'value of the temperature:', FLAGS.temp
print 'number of classes:', FLAGS.num_classes
print 'GPU id:', FLAGS.gpu
#print 'path to save the model:', FLAGS.log_dir
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.gpu)
run_training()