-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocr_vid.py
142 lines (93 loc) · 3.06 KB
/
ocr_vid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from imutils.video import VideoStream
from imutils.video import FPS
from imutils.object_detection import non_max_suppression
import numpy as np
import argparse
import imutils
import time
import cv2
def decode_pred(scores,geo):
(numR,numC) = scores.shape[2:4]
rects = []
conf = []
for y in range(0,numR):
scoresD = scores[0,0,y]
xdata0 = geo[0,0,y]
xdata1 = geo[0,2,y]
xdata2 = geo[0,2,y]
xdata3 = geo[0,3,y]
angle = geo[0,4,y]
for x in range(0,numC):
if scoresD[x] < args["min_confidence"]:
continue
(offsetX,offsetY) = (x*4.0,y*4.0)
angleD = angle[x]
cos = np.cos(angleD)
sin = np.sin(angleD)
h = xdata0[x] + xdata2[x]
w = xdata1[x] + xdata3[x]
endX = int(offsetX + (cos*xdata1[x])+(sin*xdata2[x]))
endY = int(offsetY - (sin*xdata1[x]) + (cos*xdata2[x]))
startX = int(endX -w)
startY = int(endY - h)
rects.append((startX,startY,endX,endY))
conf.append(scoresD[x])
return (rects,conf)
ap = argparse.ArgumentParser()
ap.add_argument("-east","--east",type = str,required = True)
ap.add_argument("-v","--video",type = str)
ap.add_argument("-c","--min-confidence",type = float,default = 0.5)
ap.add_argument("-w","--width",type = int,default =320)
ap.add_argument("-e","--height",type = int,default = 320)
args = vars(ap.parse_args())
(W,H) = (None,None)
(newW,newH) = (args["width"],args["height"])
(rW,rH) = (None,None)
layerN = ["feature_fusion/Conv_7/Sigmoid",
"feature_fusion/concat_3"]
print("loading....\n")
net = cv2.dnn.readNet(args["east"])
if not args.get("video",False):
print("Starting vid stream")
vs = VideoStream(arc = 0).start()
time.sleep(1.0)
else:
vs = cv2.VideoCapture(args["Video"])
fps = FPS().start()
while True:
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
if frame is None:
break
frame = imutils.resize(frame,width = 1000)
im2 = frame.copy()
if W is None or H is None:
(H,W) = frame.shape[:2]
rW = W/float(newW)
rH = H/float(newH)
frame = cv2.resize(frame,(newW,newH))
blob = cv2.dnn.blobFromImage(frame,1.0,(newW,newH),
(123.68,116.78,103.94),swapRB = True,crop = False)
net.setInput(blob)
(scores, geo) = net.forward(layerN)
(rects,conf) = decode_pred(scores,geo)
boxes = non_max_suppression(np.array(rects),probs = conf)
for (startX,startY,endX,endY) in boxes:
startX = int(startX*rW)
startY = int(startY*rH)
endX = int(endX*rW)
endY = int(endY*rH)
cv2.rectangle(im2,(startX,startY),(endX,endY),(0,255,0),2)
fps.update()
cv2.imshow("Vid",im2)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
fps.stop()
print("Elapsed time:{:.2f}".format(fps.elapsed()))
print("Approx fps: {:.2f}".format(fps.fps()))
if not args.get("video",False):
vs.stop()
else:
vs.release()
cv2.destroyAllWindows()