-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer_flex.py
342 lines (294 loc) · 14.1 KB
/
trainer_flex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
FlexMatch training
"""
import logging
import time
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from tqdm import tqdm
from utils import AverageMeter, save_checkpoint, accuracy, roc_id_ood, compute_roc
from utils import Logger
from copy import deepcopy
from collections import Counter
import os
logger = logging.getLogger(__name__)
best_acc = -1
best_acc_val = -1
def train(args, labeled_trainloader, unlabeled_dataset, test_loader, val_loader,
ood_loaders, model, optimizer, ema_model, scheduler):
global best_acc
global best_acc_val
test_accs = []
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_fix = AverageMeter()
mask_probs = AverageMeter()
used_c = AverageMeter()
total_c = AverageMeter()
used_ood = AverageMeter()
end = time.time()
model.train()
unlabeled_trainloader = DataLoader(unlabeled_dataset,
sampler=RandomSampler(unlabeled_dataset),
batch_size=args.batch_size * args.mu,
num_workers=args.num_workers,
drop_last=True)
labeled_iter = iter(labeled_trainloader)
unlabeled_iter = iter(unlabeled_trainloader)
if args.local_rank in [-1, 0]:
if args.resume:
logger_custom = Logger(os.path.join(args.out, 'log.txt'), title='cifar', resume=True)
else:
logger_custom = Logger(os.path.join(args.out, 'log.txt'), title='cifar')
logger_custom.set_names(['train_loss', 'train_loss_x', 'train_loss_fix',
'total_acc', 'Mask', 'Used_acc', 'Used OOD',
'Test Acc.', 'Test Loss', 'test_overall',
'test_unk', 'test_roc', 'test_roc_softm', 'val_acc',
'Test ROC C10', 'Test ROC C100', 'Test ROC SVHN', 'Test ROC lsun', 'Test ROC imagenet'])
ulb_dest_len = len(unlabeled_dataset)
selected_label = torch.ones((ulb_dest_len,), dtype=torch.long, ) * -1
selected_label = selected_label.cuda()
classwise_acc = torch.zeros((args.num_classes,)).cuda()
for epoch in range(args.start_epoch, args.epochs):
print('\nEpoch1: [%d | %d] ' % (epoch + 1, args.epochs))
for batch_idx in range(args.eval_step):
try:
(inputs_x_w, _, _), targets_x, _ = labeled_iter.next()
except:
labeled_iter = iter(labeled_trainloader)
(inputs_x_w, _, _), targets_x, _ = labeled_iter.next()
try:
(inputs_u_w, inputs_u_s, _), targets_u_gt, idx_u = unlabeled_iter.next()
except:
unlabeled_iter = iter(unlabeled_trainloader)
(inputs_u_w, inputs_u_s, _), targets_u_gt, idx_u = unlabeled_iter.next()
data_time.update(time.time() - end)
b_size = inputs_x_w.shape[0]
inputs_train = torch.cat([inputs_x_w, inputs_u_w, inputs_u_s], 0).to(args.device)
targets_x = targets_x.to(args.device)
logits, _ = model(inputs_train)
logits_x = logits[:b_size]
logits_u_w, logits_u_s = logits[b_size:].chunk(2)
with torch.no_grad():
pseudo_label = torch.softmax(logits_u_w, dim=-1)
max_probs, targets_u = torch.max(pseudo_label, dim=-1)
# mask = max_probs.ge(args.threshold).float()
# max_probs, max_idx = torch.max(torch.softmax(logits_x_ulb_w.detach(), dim=-1), dim=-1)
select = max_probs.ge(args.threshold * (classwise_acc[targets_u] / (2. - classwise_acc[targets_u]))) # convex
mask = select.to(max_probs.dtype)
mask_probs.update(mask.mean().item())
total_acc = targets_u.cpu().eq(targets_u_gt).float().view(-1)
if mask.sum() != 0:
used_c.update(total_acc[mask != 0].mean(0).item(), mask.sum())
tmp = (targets_u_gt[mask != 0] == args.num_classes).float()
used_ood.update(tmp.mean().item())
total_c.update(total_acc.mean(0).item())
Lx = F.cross_entropy(logits_x, targets_x, reduction='mean')
L_fix = (F.cross_entropy(logits_u_s, targets_u, reduction='none') * mask).mean()
loss = Lx + L_fix
# update classwise acc
if idx_u[select == 1].nelement() != 0:
selected_label[idx_u[select == 1]] = targets_u[select == 1]
classwise_acc = update_classwise_acc(classwise_acc, selected_label, ulb_dest_len, args.num_classes, True)
optimizer.zero_grad()
loss.backward()
losses.update(loss.item())
losses_x.update(Lx.item())
losses_fix.update(L_fix.item())
optimizer.step()
if args.opt != 'adam':
scheduler.step()
if args.use_ema:
ema_model.update(model)
batch_time.update(time.time() - end)
end = time.time()
if args.use_ema:
test_model = ema_model.ema
else:
test_model = model
if args.local_rank in [-1, 0]:
if len(val_loader) == 0:
val_acc = 0
else:
val_acc = test(args, val_loader, test_model, epoch, val=True)
test_loss, test_acc_close, test_overall, \
test_unk, test_roc, test_roc_softm, test_id, f1_mi, f1_ma \
= test(args, test_loader, test_model, epoch)
ood_dataset_roc = {'cifar10': 0, 'cifar100': 0, 'svhn': 0, 'lsun': 0, 'imagenet': 0}
for ood in ood_loaders.keys():
roc_ood = test_ood(args, test_id, ood_loaders[ood], test_model)
logger.info("ROC vs {ood}: {roc}".format(ood=ood, roc=roc_ood))
ood_dataset_roc[ood] = roc_ood
logger_custom.append(
[losses.avg, losses_x.avg, losses_fix.avg,
total_c.avg, mask_probs.avg, used_c.avg, used_ood.avg,
test_acc_close, test_loss, test_overall, test_unk, test_roc, test_roc_softm, val_acc,
ood_dataset_roc['cifar10'], ood_dataset_roc['cifar100'], ood_dataset_roc['svhn'],
ood_dataset_roc['lsun'], ood_dataset_roc['imagenet']])
is_best = val_acc > best_acc_val
best_acc_val = max(val_acc, best_acc_val)
if is_best:
overall_valid = test_overall
close_valid = test_acc_close
unk_valid = test_unk
roc_valid = test_roc
roc_softm_valid = test_roc_softm
model_to_save = model.module if hasattr(model, "module") else model
if args.use_ema:
ema_to_save = ema_model.ema.module if hasattr(
ema_model.ema, "module") else ema_model.ema
if epoch + 1 in [100, 200, 300, 400, 450, 475, 500]:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model_to_save.state_dict(),
'ema_state_dict': ema_to_save.state_dict() if args.use_ema else None,
'acc close': test_acc_close,
'acc overall': test_overall,
'unk': test_unk,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}, is_best, args.out, filename=f'checkpoint_{epoch + 1}.pth.tar')
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model_to_save.state_dict(),
'ema_state_dict': ema_to_save.state_dict() if args.use_ema else None,
'acc close': test_acc_close,
'acc overall': test_overall,
'unk': test_unk,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}, is_best, args.out)
test_accs.append(test_acc_close)
logger.info('Best val closed acc: {:.3f}'.format(best_acc_val))
logger.info('Valid closed acc: {:.3f}'.format(close_valid))
logger.info('Valid overall acc: {:.3f}'.format(overall_valid))
logger.info('Valid unk acc: {:.3f}'.format(unk_valid))
logger.info('Valid roc: {:.3f}'.format(roc_valid))
logger.info('Valid roc soft: {:.3f}'.format(roc_softm_valid))
logger.info('Mean top-1 acc: {:.3f}\n'.format(
np.mean(test_accs[-20:])))
if args.local_rank in [-1, 0]:
logger_custom.close()
@torch.no_grad()
def update_classwise_acc(classwise_acc, selected_label, ulb_dest_len, num_classes, thresh_warmup):
pseudo_counter = Counter(selected_label.tolist())
if max(pseudo_counter.values()) < ulb_dest_len: # not all(5w) -1
if thresh_warmup:
for i in range(num_classes):
classwise_acc[i] = pseudo_counter[i] / max(pseudo_counter.values())
else:
wo_negative_one = deepcopy(pseudo_counter)
if -1 in wo_negative_one.keys():
wo_negative_one.pop(-1)
for i in range(num_classes):
classwise_acc[i] = pseudo_counter[i] / max(wo_negative_one.values())
return classwise_acc
def test(args, test_loader, model, epoch, val=False):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
acc = AverageMeter()
f1_mi = AverageMeter()
f1_ma = AverageMeter()
unk = AverageMeter()
top5 = AverageMeter()
end = time.time()
if not args.no_progress:
test_loader = tqdm(test_loader,
disable=args.local_rank not in [-1, 0])
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
data_time.update(time.time() - end)
model.eval()
inputs = inputs.to(args.device)
targets = targets.to(args.device)
outputs, _ = model(inputs) # [bs, num_class], [bs, 2 * num_class]
outputs = F.softmax(outputs, 1) # [bs, num_class]
known_score = outputs.max(1)[0] # [bs,]
targets_unk = targets >= int(outputs.size(1))
targets[targets_unk] = int(outputs.size(1))
known_targets = targets < int(outputs.size(1)) #[0]
known_pred = outputs[known_targets]
known_targets = targets[known_targets]
if len(known_pred) > 0:
prec1, prec5 = accuracy(known_pred, known_targets, topk=(1, 5))
top1.update(prec1.item(), known_pred.shape[0])
top5.update(prec5.item(), known_pred.shape[0])
batch_time.update(time.time() - end)
end = time.time()
if batch_idx == 0:
# unk_all = unk_score
known_all = known_score
label_all = targets
else:
# unk_all = torch.cat([unk_all, unk_score], 0)
known_all = torch.cat([known_all, known_score], 0)
label_all = torch.cat([label_all, targets], 0)
if not args.no_progress:
test_loader.set_description("Test Iter: {batch:4}/{iter:4}. "
"Data: {data:.3f}s."
"Batch: {bt:.3f}s. "
"Loss: {loss:.4f}. "
"Closed t1: {top1:.3f} "
"t5: {top5:.3f} ".format(
batch=batch_idx + 1,
iter=len(test_loader),
data=data_time.avg,
bt=batch_time.avg,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
))
if not args.no_progress:
test_loader.close()
# ROC calculation
known_all = known_all.data.cpu().numpy()
label_all = label_all.data.cpu().numpy()
if not val:
roc_soft = compute_roc(-known_all, label_all,
num_known=int(outputs.size(1)))
roc = roc_soft
ind_known = np.where(label_all < int(outputs.size(1)))[0]
id_score = -(known_all[ind_known])
logger.info("Closed acc: {:.4f}".format(top1.avg))
logger.info("ROC: {:.4f}".format(roc))
logger.info("ROC Softmax: {:.4f}".format(roc_soft))
return losses.avg, top1.avg, acc.avg, \
unk.avg, roc, roc_soft, id_score, f1_mi.avg, f1_ma.avg
else:
logger.info("Closed acc: {:.3f}".format(top1.avg))
return top1.avg
def test_ood(args, test_id, test_loader, model):
batch_time = AverageMeter()
data_time = AverageMeter()
end = time.time()
if not args.no_progress:
test_loader = tqdm(test_loader,
disable=args.local_rank not in [-1, 0])
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
data_time.update(time.time() - end)
model.eval()
inputs = inputs.to(args.device)
outputs, _ = model(inputs)
outputs = F.softmax(outputs, 1) # [bs, num_class]
unk_score = -(outputs.max(1)[0]) # [bs,]
batch_time.update(time.time() - end)
end = time.time()
if batch_idx == 0:
unk_all = unk_score
else:
unk_all = torch.cat([unk_all, unk_score], 0)
if not args.no_progress:
test_loader.close()
# ROC calculation
unk_all = unk_all.data.cpu().numpy()
roc = roc_id_ood(test_id, unk_all)
return roc