-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun.py
133 lines (118 loc) · 5.71 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from generate import EmulatorGenerator
import argparse
from argparse import Namespace
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List
import os
import json
# bad_model_path = 'hf_models/Llama-2-7b-chat_bad100_2e-5'
# ref_base_model_path = "NousResearch/Llama-2-7b-chat-hf"
# tgt_model_path = "NousResearch/Llama-2-13b-chat-hf"
# hf_cache_dir = '[your cache dir]'
# output_dir = './data/'
# max_gen_len = 256
# temperature = 0.1
# top_p = 0.9
# beta = 1.5
def main(args):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
print("seed: " + str(seed))
ref_base_model = AutoModelForCausalLM.from_pretrained(args.ref_base_model_path, load_in_8bit=True, use_flash_attention_2=True, cache_dir=args.hf_cache_dir, device_map="auto").eval()
ref_finetune_model = AutoModelForCausalLM.from_pretrained(args.bad_model_path, load_in_8bit=True, use_flash_attention_2=True, local_files_only=True, device_map="auto").eval()
tgt_model = AutoModelForCausalLM.from_pretrained(args.tgt_model_path, load_in_8bit=True, use_flash_attention_2=True, cache_dir=args.hf_cache_dir, device_map="auto").eval()
tokenizer = AutoTokenizer.from_pretrained(args.ref_base_model_path, cache_dir=args.hf_cache_dir)
print(ref_base_model.device, ref_finetune_model.device, tgt_model.device, ref_base_model.config.vocab_size, ref_finetune_model.config.vocab_size, tgt_model.config.vocab_size)
generator_ref = EmulatorGenerator(ref_finetune_model, tokenizer)
generator_tgt = EmulatorGenerator(tgt_model, tokenizer)
with open(args.att_file, 'r') as f:
advbench = f.readlines()
prompt_template = "Human: {}Assistant: "
# prompt_template = "{}"
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
prompts = [prompt_template.format(adv) for adv in advbench]
max_gen_len = args.max_gen_len
temperature = args.temperature
top_p = args.top_p
beta = args.beta
output_file = f"{args.output_file}_beta_{args.beta:.2f}_seed_{args.seed}.jsonl"
with open(os.path.join(output_dir, output_file), "a") as f:
for ii in range(0, len(prompts), args.batch_size):
# for ii in range(0, 30, args.batch_size):
# generate chunk
time0 = time.time()
chunk_size = min(args.batch_size, len(prompts) - ii)
if args.ignore == 0:
results = generator_ref.generate(
prompts=prompts[ii:ii + chunk_size],
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
)
results2 = generator_tgt.generate(
prompts=prompts[ii:ii + chunk_size],
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
)
results3 = generator_tgt.generate_with_ref(
ref_base_model=ref_base_model,
ref_finetune_model=ref_finetune_model,
prompts=prompts[ii:ii + chunk_size],
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
beta=beta,
)
time1 = time.time()
# time chunk
speed = chunk_size / (time1 - time0)
eta = (len(prompts) - ii) / speed
eta = time.strftime("%Hh%Mm%Ss", time.gmtime(eta))
print(f"Generated {ii:5d} - {ii + chunk_size:5d} - Speed {speed:.2f} prompts/s - ETA {eta}")
# log
if args.ignore == 0:
for prompt, ref_result, tgt_result, att_result in zip(prompts[ii:ii + chunk_size], results, results2, results3):
f.write(json.dumps({
"prompt": prompt,
"att_result": att_result[len(prompt):],
"ref_result": ref_result[len(prompt):],
"tgt_result": tgt_result[len(prompt):],
"speed": speed,
"eta": eta}) + "\n")
f.flush()
else:
for prompt, att_result in zip(prompts[ii:ii + chunk_size], results3):
f.write(json.dumps({
"prompt": prompt,
"att_result": att_result[len(prompt):],
"ref_result": None,
"tgt_result": None,
"speed": speed,
"eta": eta}) + "\n")
f.flush()
print("Finished!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bad_model_path", type=str, default='./hf_models/Llama-2-7b-chat_bad100_2e-5')
parser.add_argument("--ref_base_model_path", type=str, default="NousResearch/Llama-2-7b-chat-hf")
parser.add_argument("--tgt_model_path", type=str, default="NousResearch/Llama-2-13b-chat-hf")
parser.add_argument("--hf_cache_dir", type=str, default='./hf_models')
parser.add_argument("--output_dir", type=str, default='./output/')
parser.add_argument("--output_file", type=str, default='llama2_13b')
parser.add_argument("--max_gen_len", type=int, default=256)
parser.add_argument("--temperature", type=float, default=0.1)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--beta", type=float, default=1.0)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--ignore", type=int, default=0)
parser.add_argument("--att_file", type=str, default='./data/advbench.txt')
args = parser.parse_args()
print(args)
main(args)