-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
407 lines (367 loc) · 15.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from __future__ import print_function
import numpy as np
import random
import h5py
import os
import pandas as pd
import scipy.io as si
import cPickle as cp
# import pickle as cp # python3 compatability
import networkx as nx
import tensorflow as tf
import argparse
cmd_opt = argparse.ArgumentParser(description='Argparser for graph_classification')
cmd_opt.add_argument('-mode', default='cpu', help='cpu/gpu')
cmd_opt.add_argument('-gm', default='mean_field', help='mean_field/loopy_bp')
cmd_opt.add_argument('-data', default=None, help='data folder name')
cmd_opt.add_argument('-batch_size', type=int, default=50, help='minibatch size')
cmd_opt.add_argument('-seed', type=int, default=1, help='seed')
cmd_opt.add_argument('-feat_dim', type=int, default=0, help='dimension of discrete node feature (maximum node tag)')
cmd_opt.add_argument('-num_class', type=int, default=0, help='#classes')
cmd_opt.add_argument('-fold', type=int, default=1, help='fold (1..10)')
cmd_opt.add_argument('-test_number', type=int, default=0,
help='if specified, will overwrite -fold and use the last -test_number graphs as testing data')
cmd_opt.add_argument('-num_epochs', type=int, default=1000, help='number of epochs')
cmd_opt.add_argument('-latent_dim', type=str, default='64', help='dimension(s) of latent layers')
cmd_opt.add_argument('-sortpooling_k', type=float, default=30, help='number of nodes kept after SortPooling')
cmd_opt.add_argument('-out_dim', type=int, default=1024, help='s2v output size')
cmd_opt.add_argument('-hidden', type=int, default=100, help='dimension of regression')
cmd_opt.add_argument('-max_lv', type=int, default=4, help='max rounds of message passing')
cmd_opt.add_argument('-learning_rate', type=float, default=0.0001, help='init learning_rate')
cmd_opt.add_argument('-dropout', type=bool, default=False, help='whether add dropout after dense layer')
cmd_opt.add_argument('-printAUC', type=bool, default=False,
help='whether to print AUC (for binary classification only)')
cmd_opt.add_argument('-extract_features', type=bool, default=False, help='whether to extract final graph features')
cmd_args, _ = cmd_opt.parse_known_args()
cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')]
if len(cmd_args.latent_dim) == 1:
cmd_args.latent_dim = cmd_args.latent_dim[0]
class S2VGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a numpy array of continuous node features
'''
self.num_nodes = len(node_tags)
self.node_tags = node_tags
self.label = label
self.node_features = node_features # numpy array (node_num * feature_dim)
self.degs = dict(g.degree).values()
if len(g.edges()) != 0:
x, y = zip(*g.edges())
self.num_edges = len(x)
self.edge_pairs = np.ndarray(shape=(self.num_edges, 2), dtype=np.int32)
self.edge_pairs[:, 0] = x
self.edge_pairs[:, 1] = y
self.edge_pairs = self.edge_pairs.flatten()
else:
self.num_edges = 0
self.edge_pairs = np.array([])
def CalGraph(matlist, filepath, label):
g_list = []
for mt in range(len(matlist)):
matfile = filepath + 'MI_ResOC_suj' + str(matlist[mt]) + '.mat'
mat = si.loadmat(matfile)
graph = np.asarray(mat['mi'])[:, :, 5, :]
graph = (graph > 0.1)
for i in range(graph.shape[2]):
g = nx.Graph()
data = graph[:, :, i]
for j in range(data.shape[0]):
g.add_node(j)
for k in range(data.shape[1]):
if data[j][k] != 0:
g.add_edge(j, k)
adj = (data > 0) + 0
feas1 = np.mean(data, axis=1).reshape(-1, 1)
feas2 = np.sum(adj, axis=1).reshape(-1, 1)
node_features = np.hstack((feas1, feas2))
node_tags = np.ones(data.shape[0]).tolist()
l = label
assert len(g) == data.shape[0]
g_list.append(S2VGraph(g, l, node_tags, node_features))
return g_list
def load_data():
print('loading data')
g_list = []
label_dict = {}
feat_dict = {}
with open('data/%s/%s.txt' % (cmd_args.data, cmd_args.data), 'r') as f:
# with open('data/%s/%s.txt' % ('DD', 'DD'), 'r') as f:
n_g = int(f.readline().strip())
for i in range(n_g):
row = f.readline().strip().split()
n, l = [int(w) for w in row]
if not l in label_dict:
mapped = len(label_dict)
label_dict[l] = mapped
g = nx.Graph()
node_tags = []
node_features = []
n_edges = 0
for j in range(n):
g.add_node(j)
row = f.readline().strip().split()
tmp = int(row[1]) + 2
if tmp == len(row):
# no node attributes
row = [int(w) for w in row]
attr = None
else:
row, attr = [int(w) for w in row[:tmp]], np.array([float(w) for w in row[tmp:]])
if not row[0] in feat_dict:
mapped = len(feat_dict)
feat_dict[row[0]] = mapped
node_tags.append(feat_dict[row[0]])
if tmp > len(row):
node_features.append(attr)
n_edges += row[1]
for k in range(2, len(row)):
g.add_edge(j, row[k])
if node_features != []:
node_features = np.stack(node_features)
node_feature_flag = True
else:
node_features = None
node_feature_flag = False
# assert len(g.edges()) * 2 == n_edges (some graphs in COLLAB have self-loops, ignored here)
assert len(g) == n
g_list.append(S2VGraph(g, l, node_tags, node_features))
for g in g_list:
g.label = label_dict[g.label]
cmd_args.num_class = len(label_dict)
cmd_args.feat_dim = len(feat_dict) # maximum node label (tag)
if node_feature_flag == True:
cmd_args.attr_dim = node_features.shape[1] # dim of node features (attributes)
else:
cmd_args.attr_dim = 0
print('# classes: %d' % cmd_args.num_class)
print('# maximum node tag: %d' % cmd_args.feat_dim)
if cmd_args.test_number == 0:
train_idxes = np.loadtxt('data/%s/10fold_idx/train_idx-%d.txt' % (cmd_args.data, cmd_args.fold),
dtype=np.int32).tolist()
test_idxes = np.loadtxt('data/%s/10fold_idx/test_idx-%d.txt' % (cmd_args.data, cmd_args.fold),
dtype=np.int32).tolist()
return [g_list[i] for i in train_idxes], [g_list[i] for i in test_idxes]
else:
return g_list[: n_g - cmd_args.test_number], g_list[n_g - cmd_args.test_number:]
def from_mat():
filepath = '../lung_data.mat'
f = h5py.File(filepath)
graphdata = f['lung_data']['graph'][0] # affinityGraph afGraph02 afGraph08 nGraph
graphs = []
for g in graphdata:
graphs.append(np.array(f[g]))
graphs = np.asarray(graphs)
gdata = f['lung_data']['graphLabel'][0]
glabels = []
for g in gdata:
glabels.append(np.array(f[g]))
# len(glabels) = 135
hdata = f['lung_data']['heterogeneityLabel'][0]
hlabels = []
for h in hdata:
hlabels.append(np.array(f[h]))
# len(hlabels) = 135
labeldata = f['lung_data'][cmd_args.plabel][0]
labels = []
for l in labeldata:
labels.append(np.array(f[l]))
labels = np.asarray(labels).reshape(-1)
return graphs, labels, hlabels, glabels
def load_pet_data(train_num, class_num=2):
print('loading pet data...')
g_list = []
data, label, hlabel, glabel = from_mat()
node_features = []
for i in range(data.shape[0]):
g = nx.Graph()
for j in range(data[i].shape[0]):
g.add_node(j)
for k in range(data[i].shape[1]):
if data[i][j][k] != 0:
g.add_edge(j, k)
adj = (data[i] > 0) + 0
feas1 = glabel[i].reshape(-1, 1)
feas2 = hlabel[i].reshape(-1, 1)
feas3 = np.mean(data[i], axis=1).reshape(-1, 1)
feas4 = np.sum(adj, axis=1).reshape(-1, 1)
node_features = np.hstack((feas1, feas2, feas3, feas4))
node_tags = np.ones(data[i].shape[0]).tolist()
l = label[i]
if l == 2:
continue
assert len(g) == data[i].shape[0]
g_list.append(S2VGraph(g, l, node_tags, node_features))
cmd_args.num_class = class_num
cmd_args.feat_dim = 1
cmd_args.attr_dim = node_features.shape[1]
print('# classes: %d' % cmd_args.num_class)
print('# maximum node tag: %d' % cmd_args.feat_dim)
idx = np.random.permutation(len(g_list))
train_idx = idx[0:train_num]
test_idx = idx[train_num:]
return [g_list[i] for i in train_idx], [g_list[i] for i in test_idx]
def load_balance_data(train_num, class_num=2):
train_datas, test_datas = load_pet_data(train_num, class_num)
train_data = [[] for i in range(class_num)]
for i in range(len(train_datas)):
train_data[int(train_datas[i].label)].append(train_datas[i])
maxtrainlen = 0
maxtrainidx = 0
for i in range(len(train_data)):
if len(train_data[i]) > maxtrainlen:
maxtrainlen = len(train_data[i])
maxtrainidx = i
all_train_data = []
for i in range(maxtrainlen):
for j in range(len(train_data)):
if j == maxtrainidx:
all_train_data.append(train_data[j][i])
else:
tempidx = random.randint(0, len(train_data[j]) - 1)
all_train_data.append(train_data[j][tempidx])
print('all train data %d' % len(all_train_data))
test_data = [[] for i in range(class_num)]
for i in range(len(test_datas)):
test_data[int(test_datas[i].label)].append(test_datas[i])
maxtestlen = 0
maxtestidx = 0
for i in range(len(test_data)):
if len(test_data[i]) > maxtestlen:
maxtestlen = len(test_data[i])
maxtestidx = i
all_test_data = []
for i in range(maxtestlen):
for j in range(len(test_data)):
if j == maxtestidx:
all_test_data.append(test_data[j][i])
else:
tempidx = random.randint(0, len(test_data[j]) - 1)
all_test_data.append(test_data[j][tempidx])
print('all test data %d' % len(all_test_data))
return all_train_data, all_test_data
def construct_graph(x):
mask = [[-2, -2], [-2, -1], [-2, 0], [-2, 1], [-2, 2],
[-1, -2], [-1, -1], [-1, 0], [-1, 1], [-1, 2],
[0, -2], [0, -1], [0, 1], [0, 2],
[1, -2], [1, -1], [1, 0], [1, 1], [1, 2],
[2, -2], [2, -1], [2, 0], [2, 1], [2, 2]]
map = np.zeros((28, 28))
nNodes = 0
for i in range(28):
for j in range(28):
if x[i][j] != 0:
nNodes = nNodes + 1
map[i][j] = nNodes
graph = np.zeros((nNodes, nNodes))
graph_label = np.zeros((nNodes, 1))
for i in range(28):
for j in range(28):
if map[i][j] != 0:
node0 = map[i][j]
pixel0 = x[i][j]
for t in range(24):
ii = i + mask[t][0]
jj = j + mask[t][1]
if (ii >= 0 and ii <= 27 and jj >= 0 and jj <= 27):
if map[ii][jj] != 0:
node1 = map[ii][jj]
pixel1 = x[ii][jj]
if (abs(mask[t][0]) == 2 or abs(mask[t][1]) == 2):
coeff = 2
else:
coeff = 1
graph[int(node0 - 1)][int(node1 - 1)] = coeff * abs(int(pixel0) - int(pixel1))
graph_label[int(node0 - 1)][0] = pixel0
return graph, graph_label
def load_all_minist_data():
print('loading all minist data...')
g_list_train = []
g_list_test = []
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
y_train = y_train.astype(int)
y_test = y_test.astype(int)
for i in range(x_train.shape[0]):
g = nx.Graph()
matrix, feas1 = construct_graph(x_train[i])
for j in range(matrix.shape[0]):
g.add_node(j)
for k in range(matrix.shape[1]):
if matrix[j][k] != 0:
g.add_edge(j, k)
adj = (matrix > 0) + 0
feas2 = np.mean(matrix, axis=1).reshape(-1, 1)
feas3 = np.sum(adj, axis=1).reshape(-1, 1)
node_features = np.hstack((feas1, feas2, feas3))
node_tags = np.ones(matrix.shape[0]).tolist()
l = y_train[i]
assert len(g) == matrix.shape[0]
g_list_train.append(S2VGraph(g, l, node_tags, node_features))
for i in range(x_test.shape[0]):
g = nx.Graph()
matrix, feas1 = construct_graph(x_test[i])
for j in range(matrix.shape[0]):
g.add_node(j)
for k in range(matrix.shape[1]):
if matrix[j][k] != 0:
g.add_edge(j, k)
adj = (matrix > 0) + 0
feas2 = np.mean(matrix, axis=1).reshape(-1, 1)
feas3 = np.sum(adj, axis=1).reshape(-1, 1)
node_features = np.hstack((feas1, feas2, feas3))
node_tags = np.ones(matrix.shape[0]).tolist()
l = y_test[i]
assert len(g) == matrix.shape[0]
g_list_test.append(S2VGraph(g, l, node_tags, node_features))
cmd_args.num_class = 10
cmd_args.feat_dim = 1
cmd_args.attr_dim = node_features.shape[1]
print('# classes: %d' % cmd_args.num_class)
print('# maximum node tag: %d' % cmd_args.feat_dim)
return g_list_train, g_list_test
def load_minist_data(train_num):
print('loading minist data...')
g_list = []
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x1_idx = (y_train == 1)
x0_idx = (y_train == 0)
x1 = x_train[x1_idx]
x0 = x_train[x0_idx]
x = []
y = []
for i in range(train_num):
x.append(x1[i])
y.append(1)
x.append(x0[i])
y.append(0)
for i in range(len(x)):
g = nx.Graph()
matrix, feas1 = construct_graph(x[i])
for j in range(matrix.shape[0]):
g.add_node(j)
for k in range(matrix.shape[1]):
if matrix[j][k] != 0:
g.add_edge(j, k)
adj = (matrix > 0) + 0
feas2 = np.mean(matrix, axis=1).reshape(-1, 1)
feas3 = np.sum(adj, axis=1).reshape(-1, 1)
node_features = np.hstack((feas1, feas2, feas3))
node_tags = np.ones(matrix.shape[0]).tolist()
l = y[i]
assert len(g) == matrix.shape[0]
g_list.append(S2VGraph(g, l, node_tags, node_features))
cmd_args.num_class = 2
cmd_args.feat_dim = 1
cmd_args.attr_dim = node_features.shape[1]
print('# classes: %d' % cmd_args.num_class)
print('# maximum node tag: %d' % cmd_args.feat_dim)
return g_list[0: train_num], g_list[train_num:]
def main():
load_minist_data(100)
if __name__ == '__main__':
main()