-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmae_eval.py
26 lines (22 loc) · 963 Bytes
/
mae_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import os
import cv2
import argparse
from sklearn.metrics import mean_absolute_error
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='./dataset', help='path where to save testing data')
parser.add_argument('--save_dir', default='./results', help='path where to save predicted maps')
opt = parser.parse_args()
dataset_list = ['NJU2K_Test', 'STERE', 'DES', 'NLPR_Test', 'LFSD', 'SIP', 'SSD']
all_mae = []
for dataset in dataset_list:
gt_dir = os.path.join(opt.data_dir, 'test_data', 'gt', dataset)
pred_dir = os.path.join(opt.save_dir, dataset)
mae = 0
for file in os.listdir(pred_dir):
pred = cv2.imread(os.path.join(pred_dir, file),0) / 255
gt = cv2.imread(os.path.join(gt_dir, file),0) / 255
mae += mean_absolute_error(gt, pred)
mae = mae / len(os.listdir(pred_dir))
all_mae.append(mae)
for dataset, mae in zip(dataset_list, all_mae):
print('{}: {:0.4f}'.format(dataset, mae))