-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_testdataset_TAE_all_levels_Ours.lua
192 lines (154 loc) · 5.32 KB
/
run_testdataset_TAE_all_levels_Ours.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
require 'hdf5'
require 'nngraph'
require 'torch'
require 'nn'
require 'cunn'
require 'optim'
require 'image'
require 'pl'
require 'paths'
require 'cudnn'
require 'stn'
require 'sys'
ok, disp = pcall(require, 'display')
if not ok then print('display not found. unable to plot') end
-- cannot get so large memory to save hdf5, so we only test every 2048 for 4 times
ntrain = 163904
num = 1024*2
inter_dataset = torch.FloatTensor(num,3,128,128):fill(0)
GPU_ID = 1
cutorch.setDevice(GPU_ID)
function saveDataset(data, model, start)
local N = data:size(1)
local inputs_lr = torch.Tensor(N,3,16,16)
for i = 1,N do
inputs_lr[i] = data[i]
end
-- Generate
local samples = model:forward(inputs_lr)
samples = nn.HardTanh():forward(samples)
samples:add(1):mul(0.5)
--start = start+N
for i = 1,N do
local tmp = samples[i]:float()
inter_dataset[start+i] = tmp:clone()
end
end
function saveImages(data, model_TAE, model_decoder, foldername,start)
local N = data:size(1)
local inputs_hr = torch.Tensor(N,3,128,128)
for i = 1,N do
inputs_hr[i] = data[i]
end
-- Generate
--sys.tic()
local samples = model_TAE:forward(inputs_hr)
--t = sys.toc()
--print(t)
samples = nn.HardTanh():forward(samples)
local samples_UR = model_decoder:forward(samples)
samples_UR = nn.HardTanh():forward(samples_UR)
local to_plot = {}
for i = 1,N do
to_plot[i] = samples_UR[i]:float()
torch.setdefaulttensortype('torch.FloatTensor')
local GEN = image.toDisplayTensor({input=to_plot[i], nrow=1})
--GEN:add(1):div(2):float()
GEN = GEN:index(1,torch.LongTensor{3,2,1})
filename = string.format("%05d.png",i+start)
image.save(foldername .. filename, GEN)
end
torch.setdefaulttensortype('torch.CudaTensor')
cutorch.setDevice(GPU_ID)
samples_UR = nn.HardTanh():forward(samples_UR)
samples_UR:add(1):mul(0.5)
for i = 1,N do
local tmp = samples_UR[i]:float()
inter_dataset[start+i] = tmp:clone()
end
end
torch.setdefaulttensortype('torch.CudaTensor')
--model = torch.load('/media/anu-user1/2TB/xin/Res_GAN/logs128_ytc16_URDGN/adversarial.net')
model = torch.load('CVPR_Model/adversarial.net.old_63')
--torch.setdefaulttensortype('torch.CudaTensor') -- when using torch.CudaTensor please not use 'image', there will be some bugs
model_STUR = model.G
model_STUR:evaluate()
---------------------------------------------------------------------------------------
-------------------------- first stage ------------------------------------
---------------------------------------------------------------------------------------
filename_hdf5 = "../dataset/YTC_LR_unalign_30.hdf5"
local lowHd5 = hdf5.open(filename_hdf5, 'r')
local data_LR = lowHd5:read('YTC'):all()
data_LR:mul(2):add(-1)
lowHd5:close()
Data_LR = data_LR[{{ntrain+1,ntrain+num}}]
save_filename = "CVPR_Model/YTC_LR_UR_CVPR.hdf5"
if not paths.filep(save_filename) then
os.remove(save_filename)
end
num_remainder = num%100
num_loop = (num-num_remainder)/100
for i = 1,num_loop do
--sys.tic()
saveDataset(Data_LR[{{(i-1)*100+1,i*100}}], model_STUR, (i-1)*100)
--t = sys.toc()
--print(t)
end
if num_remainder ~= 0 then
saveDataset(Data_LR[{{num_loop*100+1,num}}], model_STUR, num_loop*100)
end
local inter_hdf5 = hdf5.open(save_filename, 'w')
inter_hdf5:write('YTC', inter_dataset)
inter_hdf5:close()
torch.setdefaulttensortype('torch.CudaTensor')
model_STUR = nil
model = nil
collectgarbage()
----------------------------------------------------------
----------------------------------------------------------
-- Load TAE
--TAE = torch.load('/media/anu-user1/2TB/xin/Res_GAN/TAE/TAE.net_76')
TAE = torch.load('CVPR_Model/TAE.net')
--torch.setdefaulttensortype('torch.CudaTensor') -- when using torch.CudaTensor please not use 'image', there will be some bugs
model_TAE = TAE.EN
model_TAE:evaluate()
-- Decoder
--model = torch.load('/media/anu-user1/2TB/xin/Res_GAN/logs128_ytc16_stn_D_decay_noise_free/adversarial.net_124')
--model = torch.load('/media/anu-user1/2TB/xin/Res_GAN/logs128_ytc16_stn_D_decay_v6_noise_01/adversarial.net_70')
--model = torch.load('/media/anu-user1/2TB/xin/Res_GAN/logs128_ytc16_stn_D_decay_TAE_decoder/adversarial.net_55')
model = torch.load('CVPR_Model/adversarial.net.old_151')
model_decoder = model.G
model_decoder:evaluate()
model.D = nil
collectgarbage()
folder = 'CVPR_Model/'
if not paths.dirp(folder) then
paths.mkdir(folder)
end
filename_hdf5 = "CVPR_Model/YTC_LR_UR_CVPR.hdf5"
local Hd5 = hdf5.open(filename_hdf5, 'r')
local data_HR = Hd5:read('YTC'):all()
data_HR:mul(2):add(-1)
Hd5:close()
Data_HR = data_HR
foldername = string.format("%s/cvpr_results/",folder)
if not paths.dirp(foldername) then
paths.mkdir(foldername)
end
save_filename = string.format("%s/cvpr_final_results.hdf5",foldername)
if not paths.filep(save_filename) then
os.remove(save_filename)
end
num_remainder = num%100
num_loop = (num-num_remainder)/100
for i = 1,num_loop do
saveImages(Data_HR[{{(i-1)*100+1,i*100}}], model_TAE, model_decoder, foldername, (i-1)*100)
end
if num_remainder ~= 0 then
saveImages(Data_HR[{{num_loop*100+1,num}}], model_TAE, model_decoder, foldername, num_loop*100)
end
torch.setdefaulttensortype('torch.CudaTensor')
local inter_hdf5 = hdf5.open(save_filename, 'w')
inter_hdf5:write('YTC', inter_dataset)
inter_hdf5:close()
torch.setdefaulttensortype('torch.CudaTensor')