-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest_advanced.py
426 lines (372 loc) · 18.3 KB
/
test_advanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from memory_layer import LLMController, AgenticMemorySystem
import os
import json
import argparse
import logging
from typing import List, Dict, Optional, Union
from dataclasses import dataclass
from pathlib import Path
import numpy as np
from openai import OpenAI
from load_dataset import load_locomo_dataset, QA, Turn, Session, Conversation
import nltk
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import pytorch_cos_sim
import statistics
from collections import defaultdict
import pickle
import random
from tqdm import tqdm
from utils import calculate_metrics, aggregate_metrics
from datetime import datetime
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('wordnet')
except LookupError:
nltk.download('punkt')
nltk.download('wordnet')
# Initialize SentenceTransformer model (this will be reused)
try:
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
except Exception as e:
print(f"Warning: Could not load SentenceTransformer model: {e}")
sentence_model = None
class advancedMemAgent:
def __init__(self, model, backend, retrieve_k, temperature_c5):
self.memory_system = AgenticMemorySystem(
model_name='all-MiniLM-L6-v2',
llm_backend=backend,
llm_model=model
)
self.retriever_llm = LLMController(backend=backend, model=model, api_key=None)
self.retrieve_k = retrieve_k
self.temperature_c5 = temperature_c5
def add_memory(self, content, time=None):
self.memory_system.add_note(content, time=time)
def retrieve_memory(self, content, k=10):
return self.memory_system.find_related_memories_raw(content, k=k)
def retrieve_memory_llm(self, memories_text, query):
prompt = f"""Given the following conversation memories and a question, select the most relevant parts of the conversation that would help answer the question. Include the date/time if available.
Conversation memories:
{memories_text}
Question: {query}
Return only the relevant parts of the conversation that would help answer this specific question. Format your response as a JSON object with a "relevant_parts" field containing the selected text.
If no parts are relevant, do not do any things just return the input.
Example response format:
{{"relevant_parts": "2024-01-01: Speaker A said something relevant..."}}"""
# Get LLM response
response = self.retriever_llm.llm.get_completion(prompt,response_format={"type": "json_schema", "json_schema": {
"name": "response",
"schema": {
"type": "object",
"properties": {
"relevant_parts": {
"type": "string",
}
},
"required": ["relevant_parts"],
"additionalProperties": False
},
"strict": True
}})
# print("response:{}".format(response))
return response
def generate_query_llm(self, question):
prompt = f"""Given the following question, generate several keywords, using 'cosmos' as the separator.
Question: {question}
Format your response as a JSON object with a "keywords" field containing the selected text.
Example response format:
{{"keywords": "keyword1, keyword2, keyword3"}}"""
# Get LLM response
response = self.retriever_llm.llm.get_completion(prompt,response_format={"type": "json_schema", "json_schema": {
"name": "response",
"schema": {
"type": "object",
"properties": {
"keywords": {
"type": "string",
}
},
"required": ["keywords"],
"additionalProperties": False
},
"strict": True
}})
print("response:{}".format(response))
try:
response = json.loads(response)["keywords"]
except:
response = response.strip()
return response
def answer_question(self, question: str, category: int, answer: str) -> str:
"""Generate answer for a question given the conversation context."""
keywords = self.generate_query_llm(question)
# if category == 3:
# raw_context = self.retrieve_memory(keywords,k=10)
# # context = self.retrieve_memory_llm(raw_context, keywords)
# else:
raw_context = self.retrieve_memory(keywords,k=self.retrieve_k)
context = raw_context
# print("context:", context)
# context = self.retrieve_memory_llm(raw_context, question)
# context = raw_context
assert category in [1,2,3,4,5]
user_prompt = f"""Context:
{context}
Question: {question}
Answer the question based only on the information provided in the context above."""
temperature = 0.7
if category == 5: # adversial question, follow the initial paper.
answer_tmp = list()
if random.random() < 0.5:
answer_tmp.append('Not mentioned in the conversation')
answer_tmp.append(answer)
else:
answer_tmp.append(answer)
answer_tmp.append('Not mentioned in the conversation')
user_prompt = f"""
Based on the context: {context}, answer the following question. {question}
Select the correct answer: {answer_tmp[0]} or {answer_tmp[1]} Short answer:
"""
temperature = self.temperature_c5
elif category == 2:
user_prompt = f"""
Based on the context: {context}, answer the following question. Use DATE of CONVERSATION to answer with an approximate date.
Please generate the shortest possible answer, using words from the conversation where possible, and avoid using any subjects.
Question: {question} Short answer:
"""
elif category == 3:
user_prompt = f"""
Based on the context: {context}, write an answer in the form of a short phrase for the following question. Answer with exact words from the context whenever possible.
Question: {question} Short answer:
"""
else:
user_prompt = f"""Based on the context: {context}, write an answer in the form of a short phrase for the following question. Answer with exact words from the context whenever possible.
Question: {question} Short answer:
"""
response = self.memory_system.llm_controller.llm.get_completion(
user_prompt,response_format={"type": "json_schema", "json_schema": {
"name": "response",
"schema": {
"type": "object",
"properties": {
"answer": {
"type": "string",
}
},
"required": ["answer"],
"additionalProperties": False
},
"strict": True
}},temperature=temperature
)
# print(response)
return response,user_prompt,raw_context
def setup_logger(log_file: Optional[str] = None) -> logging.Logger:
"""Set up logging configuration."""
logger = logging.getLogger('locomo_eval')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
# Console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# File handler if log_file is specified
if log_file:
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
return logger
def evaluate_dataset(dataset_path: str, model: str, output_path: Optional[str] = None, ratio: float = 1.0, backend: str = "openai", temperature_c5: float = 0.5, retrieve_k: int = 10):
"""Evaluate the agent on the LoComo dataset.
Args:
dataset_path: Path to the dataset file
model: Name of the model to use
output_path: Path to save results
ratio: Ratio of dataset to evaluate
"""
# Generate automatic log filename with timestamp
timestamp = datetime.now().strftime("%Y-%m-%d-%H-%M")
log_filename = f"eval_ours_{model}_{backend}_ratio{ratio}_{timestamp}.log"
log_path = os.path.join(os.path.dirname(__file__), "logs", log_filename)
# Create logs directory if it doesn't exist
os.makedirs(os.path.dirname(log_path), exist_ok=True)
logger = setup_logger(log_path)
logger.info(f"Loading dataset from {dataset_path}")
# Load dataset
samples = load_locomo_dataset(dataset_path)
logger.info(f"Loaded {len(samples)} samples")
# Select subset of samples based on ratio
if ratio < 1.0:
num_samples = max(1, int(len(samples) * ratio))
samples = samples[:num_samples]
logger.info(f"Using {num_samples} samples ({ratio*100:.1f}% of dataset)")
# Store results
results = []
all_metrics = []
all_categories = []
total_questions = 0
category_counts = defaultdict(int)
# Evaluate each sample
i = 0
error_num = 0
memories_dir = os.path.join(os.path.dirname(__file__), "cached_memories_advanced_{}_{}".format(backend, model))
os.makedirs(memories_dir, exist_ok=True)
allow_categories = [3]
for sample_idx, sample in enumerate(samples):
agent = advancedMemAgent(model, backend, retrieve_k, temperature_c5)
# Create memory cache filename based on sample and session indices
memory_cache_file = os.path.join(
memories_dir,
f"memory_cache_sample_{sample_idx}.pkl"
)
retriever_cache_file = os.path.join(
memories_dir,
f"retriever_cache_sample_{sample_idx}.pkl"
)
retriever_cache_embeddings_file = os.path.join(
memories_dir,
f"retriever_cache_embeddings_sample_{sample_idx}.npy"
)
# Check if cached memories exist
if os.path.exists(memory_cache_file):
logger.info(f"Loading cached memories for sample {sample_idx}")
# try:
with open(memory_cache_file, 'rb') as f:
cached_memories = pickle.load(f)
# Restore memories to agent
agent.memory_system.memories = cached_memories
if os.path.exists(retriever_cache_file):
print(f"Found retriever cache files:")
print(f" - Retriever cache: {retriever_cache_file}")
print(f" - Embeddings cache: {retriever_cache_embeddings_file}")
agent.memory_system.retriever = agent.memory_system.retriever.load(retriever_cache_file,retriever_cache_embeddings_file)
else:
print(f"No retriever cache found at {retriever_cache_file}, loading from memory")
agent.memory_system.retriever = agent.memory_system.retriever.load_from_local_memory(cached_memories, 'all-MiniLM-L6-v2')
print(agent.memory_system.retriever.corpus)
logger.info(f"Successfully loaded {len(cached_memories)} memories")
# except Exception as e:
# logger.info(f"Error loading cached memories: {e}. Will recreate memories.")
# cached_memories = None
else:
logger.info(f"No cached memories found for sample {sample_idx}. Creating new memories.")
cached_memories = None
for _,turns in sample.conversation.sessions.items():
for turn in turns.turns:
turn_datatime = turns.date_time
conversation_tmp = "Speaker "+ turn.speaker + "says : " + turn.text
agent.add_memory(conversation_tmp,time=turn_datatime)
# break
# i +=1
# if i>2:
# break
# break
memories_to_cache = agent.memory_system.memories
with open(memory_cache_file, 'wb') as f:
pickle.dump(memories_to_cache, f)
agent.memory_system.retriever.save(retriever_cache_file,retriever_cache_embeddings_file)
logger.info(f"\nSuccessfully cached {len(memories_to_cache)} memories")
logger.info(f"\nProcessing sample {sample_idx + 1}/{len(samples)}")
for qa in sample.qa:
if int(qa.category) in allow_categories:
total_questions += 1
category_counts[qa.category] += 1
# Generate prediction
prediction, user_prompt,raw_context = agent.answer_question(qa.question,qa.category,qa.final_answer)
try:
prediction = json.loads(prediction)["answer"]
except:
prediction = prediction
logger.info(f"Failed to parse prediction as JSON: {prediction}")
error_num += 1
# Log results
logger.info(f"\nQuestion {total_questions}: {qa.question}")
logger.info(f"Prediction: {prediction}")
logger.info(f"Reference: {qa.final_answer}")
logger.info(f"User Prompt: {user_prompt}")
logger.info(f"Category: {qa.category}")
logger.info(f"Raw Context: {raw_context}")
# Calculate metrics
metrics = calculate_metrics(prediction, qa.final_answer) if qa.final_answer else {
"exact_match": 0, "f1": 0.0, "rouge1_f": 0.0, "rouge2_f": 0.0,
"rougeL_f": 0.0, "bleu1": 0.0, "bleu2": 0.0, "bleu3": 0.0,
"bleu4": 0.0, "bert_f1": 0.0, "meteor": 0.0, "sbert_similarity": 0.0
}
all_metrics.append(metrics)
all_categories.append(qa.category)
# Store individual result
result = {
"sample_id": sample_idx,
"question": qa.question,
"prediction": prediction,
"reference": qa.final_answer,
"category": qa.category,
"metrics": metrics
}
results.append(result)
# Log progress
if total_questions % 10 == 0:
logger.info(f"Processed {total_questions} questions")
# Calculate aggregate metrics
aggregate_results = aggregate_metrics(all_metrics, all_categories)
# Prepare final results
final_results = {
"model": model,
"dataset": dataset_path,
"total_questions": total_questions,
"category_distribution": {
str(cat): count for cat, count in category_counts.items()
},
"aggregate_metrics": aggregate_results,
"individual_results": results
}
logger.info(f"Error number: {error_num}")
# Save results
if output_path:
with open(output_path, 'w') as f:
json.dump(final_results, f, indent=2)
logger.info(f"Results saved to {output_path}")
# Log summary
logger.info("\nEvaluation Summary:")
logger.info(f"Total questions evaluated: {total_questions}")
logger.info("\nCategory Distribution:")
for category, count in sorted(category_counts.items()):
logger.info(f"Category {category}: {count} questions ({count/total_questions*100:.1f}%)")
logger.info("\nAggregate Metrics:")
for split_name, metrics in aggregate_results.items():
logger.info(f"\n{split_name.replace('_', ' ').title()}:")
for metric_name, stats in metrics.items():
logger.info(f" {metric_name}:")
for stat_name, value in stats.items():
logger.info(f" {stat_name}: {value:.4f}")
return final_results
def main():
parser = argparse.ArgumentParser(description="Evaluate text-only agent on LoComo dataset")
parser.add_argument("--dataset", type=str, default="data/locomo10.json",
help="Path to the dataset file")
parser.add_argument("--model", type=str, default="gpt-4o-mini",
help="OpenAI model to use")
parser.add_argument("--output", type=str, default=None,
help="Path to save evaluation results")
parser.add_argument("--ratio", type=float, default=0.1,
help="Ratio of dataset to evaluate (0.0 to 1.0)")
parser.add_argument("--backend", type=str, default="openai",
help="Backend to use (openai or ollama)")
parser.add_argument("--temperature_c5", type=float, default=0.5,
help="Temperature for the model")
parser.add_argument("--retrieve_k", type=int, default=10,
help="Retrieve k")
args = parser.parse_args()
if args.ratio <= 0.0 or args.ratio > 1.0:
raise ValueError("Ratio must be between 0.0 and 1.0")
# Convert relative path to absolute path
dataset_path = os.path.join(os.path.dirname(__file__), args.dataset)
if args.output:
output_path = os.path.join(os.path.dirname(__file__), args.output)
else:
output_path = None
evaluate_dataset(dataset_path, args.model, output_path, args.ratio, args.backend, args.temperature_c5, args.retrieve_k)
if __name__ == "__main__":
main()