-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_qm9.py
432 lines (342 loc) · 17.7 KB
/
main_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Rdkit import should be first, do not move it
try:
from rdkit import Chem
except ModuleNotFoundError:
pass
import copy
import utils
import argparse
import wandb
from configs.datasets_config import get_dataset_info
import os
from os.path import join, exists
from qm9 import dataset
from qm9.models import get_optim, get_model, get_prop_dist
from equivariant_diffusion.utils import assert_correctly_masked
from equivariant_diffusion import utils as flow_utils
import torch
import time
import pickle
from qm9.utils import prepare_context, compute_mean_mad
from train_test import train_epoch, test, analyze_and_save
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
parser = argparse.ArgumentParser(description='TransformerDiffusion')
parser.add_argument('--exp_name', type=str, default='debug_10')
parser.add_argument('--probabilistic_model', type=str, default='diffusion',
help='diffusion')
# Training complexity is O(1) (unaffected), but sampling complexity is O(steps).
parser.add_argument('--diffusion_steps', type=int, default=500)
parser.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2',
help='learned, cosine')
parser.add_argument('--diffusion_noise_precision', type=float, default=1e-5,
)
parser.add_argument('--diffusion_loss_type', type=str, default='l2',
help='vlb, l2')
parser.add_argument('--n_epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--brute_force', type=eval, default=False,
help='True | False')
parser.add_argument('--actnorm', type=eval, default=True,
help='True | False')
parser.add_argument('--break_train_epoch', type=eval, default=False,
help='True | False')
parser.add_argument('--dp', type=eval, default=True,
help='True | False')
parser.add_argument('--condition_time', type=eval, default=True,
help='True | False')
parser.add_argument('--clip_grad', type=eval, default=True,
help='True | False')
parser.add_argument('--trace', type=str, default='hutch',
help='hutch | exact')
# <-- EGNN args
parser.add_argument('--ode_regularization', type=float, default=1e-3)
parser.add_argument('--dataset', type=str, default='qm9',
help='qm9 | qm9_second_half (train only on the last 50K samples of the training dataset)')
parser.add_argument('--datadir', type=str, default='qm9/temp',
help='qm9 directory')
parser.add_argument('--filter_n_atoms', type=int, default=None,
help='When set to an integer value, QM9 will only contain molecules of that amount of atoms')
parser.add_argument('--dequantization', type=str, default='argmax_variational',
help='uniform | variational | argmax_variational | deterministic')
parser.add_argument('--n_report_steps', type=int, default=5)
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--save_model', type=eval, default=True,
help='save model')
parser.add_argument('--generate_epochs', type=int, default=1,
help='save model')
parser.add_argument('--num_workers', type=int, default=0, help='Number of worker for the dataloader')
parser.add_argument('--test_epochs', type=int, default=50)
parser.add_argument("--conditioning", nargs='+', default=[],
help='arguments : homo | lumo | alpha | gap | mu | Cv' )
parser.add_argument('--resume', type=str, default=None,
help='')
parser.add_argument('--start_epoch', type=int, default=0,
help='')
parser.add_argument('--ema_decay', type=float, default=0.999,
help='Amount of EMA decay, 0 means off. A reasonable value'
' is 0.999.')
parser.add_argument('--augment_noise', type=float, default=0)
parser.add_argument('--n_stability_samples', type=int, default=10,
help='Number of samples to compute the stability')
parser.add_argument('--normalize_factors', type=eval, default=[1, 4, 1],
help='normalize factors for [x, categorical, integer]')
parser.add_argument('--remove_h', action='store_true')
parser.add_argument('--include_charges', type=eval, default=True,
help='include atom charge or not')
# <-- Global encoding args
parser.add_argument('--multi_hop_max_dist', type=int, default=2,
help='')
parser.add_argument('--num_encoder_layers', type=int, default=6,
help='')
parser.add_argument('--embedding_dim', type=int, default=128,
help='')
parser.add_argument('--edge_embedding_dim', type=int, default=128,
help='')
parser.add_argument('--graph_embedding_dim', type=int, default=32,
help='')
parser.add_argument('--num_attention_heads', type=int, default=8,
help='')
parser.add_argument('--num_3d_bias_kernel', type=int, default=16,
help='')
parser.add_argument('--use_2d_embedding', type=bool, default=True,
help='')
parser.add_argument('--use_3d_embedding', type=bool, default=True,
help='')
parser.add_argument('--use_2d_neighbor_embedding', type=bool, default=True,
help='')
parser.add_argument('--use_3d_neighbor_embedding', type=bool, default=True,
help='')
parser.add_argument('--apply_concrete_adjacency_neighbor', type=bool, default=False,
help='')
parser.add_argument('--use_2d_edge_embedding', type=bool, default=True,
help='')
parser.add_argument('--trainable_dist_proj', type=bool, default=True,
help='')
parser.add_argument('--use_extra_graph_embedding', type=bool, default=False,
help='')
parser.add_argument('--use_extra_graph_embedding_attn_bias', type=bool, default=False,
help='')
parser.add_argument('--cutoff_upper', type=float, default=4.0,
help='')
parser.add_argument('--cutoff_lower', type=float, default=0.0,
help='')
parser.add_argument('--use_edge_type', type=str, default='no',
help='no, multi_hop')
parser.add_argument('--distance_projection', type=str, default='exp',
help='exp, gaussian')
parser.add_argument('--neighbor_combine_embedding', type=str, default='cat',
help='cat, add, no')
parser.add_argument('--extra_feature_type', type=str, default='all',
help='all, cycles, eigenvalues')
# Transformer args
parser.add_argument('--ffn_embedding_dim', type=int, default=300,
help='')
parser.add_argument('--ffn_edge_embedding_dim', type=int, default=300,
help='')
parser.add_argument('--ffn_graph_embedding_dim', type=int, default=100,
help='')
parser.add_argument('--before_attention_qn_block_size', type=int, default=0,
help='')
parser.add_argument('--in_attention_qn_block_size', type=int, default=0,
help='')
parser.add_argument('--before_attention_dropout', type=float, default=0,
help='')
parser.add_argument('--before_attention_quant_noise', type=float, default=0,
help='')
parser.add_argument('--in_attention_feature_dropout', type=float, default=0,
help='')
parser.add_argument('--in_attention_dropout', type=float, default=0,
help='')
parser.add_argument('--in_attention_activation_dropout', type=float, default=0,
help='')
parser.add_argument('--in_attention_activation_dropout_adj', type=float, default=0,
help='')
parser.add_argument('--in_attention_activation_dropout_graph_feature', type=float, default=0,
help='')
parser.add_argument('--in_attention_quant_noise', type=float, default=0,
help='')
parser.add_argument('--in_attention_droppath', type=float, default=0,
help='')
parser.add_argument('--in_attention_droppath_adj', type=float, default=0,
help='')
parser.add_argument('--in_attention_droppath_graph_feature', type=float, default=0,
help='')
parser.add_argument('--before_attention_layernorm', type=bool, default=True,
help='')
parser.add_argument('--in_attention_layernorm', type=bool, default=True,
help='')
parser.add_argument('--in_attention_pred_adjacency', type=bool, default=True,
help='')
parser.add_argument('--attention_activation_fn', type=str, default='silu',
help='silu, relu, gelu, softmax')
# Equivariant Transformer args
parser.add_argument('--use_equivariant_transformer', type=bool, default=True,
help='')
parser.add_argument('--equivariant_use_x_layernorm', type=bool, default=True,
help='')
parser.add_argument('--equivariant_use_dx_layernorm', type=bool, default=True,
help='')
parser.add_argument('--equivariant_apply_concrete_adjacency', type=bool, default=True,
help='')
parser.add_argument('--equivariant_in_attention_dropout', type=float, default=0,
help='')
parser.add_argument('--equivariant_dx_dropout', type=float, default=0,
help='')
parser.add_argument('--equivariant_attention_activation_fn', type=str, default='silu',
help='silu, relu, gelu, softmax')
parser.add_argument('--equivariant_distance_influence', type=str, default='both',
help='both, keys, values')
# Output args
parser.add_argument('--combine_transformer_output', type=str, default='cat',
help='cat, add')
parser.add_argument('--use_output_projection', type=bool, default=True,
help='')
parser.add_argument('--use_equivariant_output_projection', type=bool, default=False,
help='')
args = parser.parse_args()
dataset_info = get_dataset_info(args.dataset, args.remove_h)
atom_encoder = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
# args, unparsed_args = parser.parse_known_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
print('On device:', device, torch.cuda.is_available())
#device = torch.device("cuda:0")
dtype = torch.float32
bs = args.batch_size
if exists(join('outputs', args.exp_name, 'args.pickle')) and (args.resume is None):
with open(join('outputs', args.exp_name, 'args.pickle'), 'rb') as f:
args = pickle.load(f)
args.break_train_epoch = False
args.batch_size = bs
print(args)
if args.resume is not None:
exp_name = args.exp_name + '_resume'
start_epoch = args.start_epoch
resume = args.resume
wandb_usr = args.wandb_usr
with open(join(args.resume, 'args.pickle'), 'rb') as f:
args = pickle.load(f)
args.resume = resume
args.break_train_epoch = False
args.exp_name = exp_name
args.start_epoch = start_epoch
args.wandb_usr = wandb_usr
print(args)
utils.create_folders(args)
# print(args)
if len(args.conditioning) > 0:
print(f'Conditioning on {args.conditioning}')
property_norms = compute_mean_mad(dataloaders, args.conditioning, args.dataset)
context_dummy = prepare_context(args.conditioning, data_dummy, property_norms)
context_node_nf = context_dummy.size(2)
else:
context_node_nf = 0
property_norms = None
args.context_node_nf = context_node_nf
gradnorm_queue = utils.Queue()
gradnorm_queue.add(3000) # Add large value that will be flushed.
def check_mask_correct(variables, node_mask):
for variable in variables:
if len(variable) > 0:
assert_correctly_masked(variable, node_mask)
def main(local_rank):
model, nodes_dist = get_model(args, dataset_info)
if exists(join('outputs', args.exp_name, 'generative_model.npy')) and exists(join('outputs', args.exp_name, 'optim.npy')) and (args.resume is None):
print('Resume training for', join('outputs', args.exp_name, 'generative_model.npy'))
flow_state_dict = torch.load(join('outputs', args.exp_name, 'generative_model.npy'))
model.load_state_dict(flow_state_dict)
print('Done loading for', join('outputs', args.exp_name, 'generative_model.npy'))
if args.resume is not None:
flow_state_dict = torch.load(join(args.resume, 'generative_model.npy'))
optim_state_dict = torch.load(join(args.resume, 'optim.npy'))
model.load_state_dict(flow_state_dict)
optim.load_state_dict(optim_state_dict)
# Initialize dataparallel if enabled and possible.
if args.dp and torch.cuda.device_count() > 1:
ip = os.environ['MASTER_IP']
port = os.environ['MASTER_PORT']
hosts = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])
gpus = torch.cuda.device_count()
dist.init_process_group(backend='nccl', init_method=f'tcp://{ip}:{port}', world_size=hosts*gpus, rank=rank*gpus+local_rank)
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
#model_dp = torch.nn.DataParallel(model.cpu())
#model_dp = model_dp.cuda()
model_dp = DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
else:
rank = 0
model = model.to(device)
model_dp = model
optim = get_optim(args, model)
if exists(join('outputs', args.exp_name, 'optim.npy')) and (args.resume is None):
optim_state_dict = torch.load(join('outputs', args.exp_name, 'optim.npy'))
optim.load_state_dict(optim_state_dict)
# Initialize model copy for exponential moving average of params.
if args.ema_decay > 0:
model_ema = copy.deepcopy(model)
ema = flow_utils.EMA(args.ema_decay)
if args.dp and torch.cuda.device_count() > 1:
#model_ema_dp = torch.nn.DataParallel(model_ema)
model_ema_dp = DistributedDataParallel(model_ema, device_ids=[local_rank], find_unused_parameters=True)
else:
model_ema_dp = model_ema
else:
ema = None
model_ema = model
model_ema_dp = model_dp
# Retrieve QM9 dataloaders
dataloaders, charge_scale, train_sampler = dataset.retrieve_dataloaders(args)
data_dummy = next(iter(dataloaders['train']))
prop_dist = get_prop_dist(args, dataloaders['train'])
if prop_dist is not None:
prop_dist.set_normalizer(property_norms)
best_nll_val = 1e8
best_nll_test = 1e8
for epoch in range(args.start_epoch, args.n_epochs):
if (train_sampler is not None) and (torch.cuda.device_count() > 1):
train_sampler.set_epoch(epoch)
start_epoch = time.time()
train_epoch(args=args, loader=dataloaders['train'], epoch=epoch, model=model, model_dp=model_dp,
model_ema=model_ema, ema=ema, device=device, dtype=dtype, property_norms=property_norms,
nodes_dist=nodes_dist, dataset_info=dataset_info,
gradnorm_queue=gradnorm_queue, optim=optim, prop_dist=prop_dist, rank=rank, local_rank=local_rank)
print(f"Epoch took {time.time() - start_epoch:.1f} seconds.")
if epoch % args.test_epochs == 0:
if rank == 0 and local_rank == 0:
if not args.break_train_epoch:
analyze_and_save(args=args, epoch=epoch, model_sample=model_ema, nodes_dist=nodes_dist,
dataset_info=dataset_info, device=device,
prop_dist=prop_dist, n_samples=args.n_stability_samples)
nll_val = test(args=args, loader=dataloaders['valid'], epoch=epoch, eval_model=model_ema_dp,
partition='Val', device=device, dtype=dtype, nodes_dist=nodes_dist,
property_norms=property_norms, rank=rank, local_rank=local_rank)
nll_test = test(args=args, loader=dataloaders['test'], epoch=epoch, eval_model=model_ema_dp,
partition='Test', device=device, dtype=dtype,
nodes_dist=nodes_dist, property_norms=property_norms, rank=rank, local_rank=local_rank)
if rank == 0 and local_rank == 0:
if nll_val < best_nll_val:
best_nll_val = nll_val
best_nll_test = nll_test
if args.save_model:
args.current_epoch = epoch + 1
utils.save_model(optim, 'outputs/%s/optim.npy' % args.exp_name)
utils.save_model(model, 'outputs/%s/generative_model.npy' % args.exp_name)
if args.ema_decay > 0:
utils.save_model(model_ema, 'outputs/%s/generative_model_ema.npy' % args.exp_name)
with open('outputs/%s/args.pickle' % args.exp_name, 'wb') as f:
pickle.dump(args, f)
print('Val loss: %.4f \t Test loss: %.4f' % (nll_val, nll_test))
print('Best val loss: %.4f \t Best test loss: %.4f' % (best_nll_val, best_nll_test))
if __name__ == "__main__":
ngpus = torch.cuda.device_count()
if args.dp and ngpus > 1:
print(f'Training using {ngpus} GPUs')
torch.multiprocessing.spawn(main, args=(), nprocs=ngpus)
else:
main(0)