-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
executable file
·264 lines (221 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os, time, argparse, os.path as osp, numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from einops import rearrange
from diffusers.optimization import get_scheduler
import math
import data.dataloader as datasets
import mmcv
import mmengine
from mmengine import MMLogger
from mmengine.config import Config
import logging
from datetime import timedelta
from accelerate import Accelerator
from accelerate.utils import set_seed, convert_outputs_to_fp32, DistributedType, ProjectConfiguration, InitProcessGroupKwargs
import warnings
warnings.filterwarnings("ignore")
def create_logger(log_file=None, is_main_process=False, log_level=logging.INFO):
if not is_main_process:
return None
logger = logging.getLogger(__name__)
logger.setLevel(log_level if is_main_process else 'ERROR')
formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s')
console = logging.StreamHandler()
console.setLevel(log_level if is_main_process else 'ERROR')
console.setFormatter(formatter)
logger.addHandler(console)
if log_file is not None:
file_handler = logging.FileHandler(filename=log_file)
file_handler.setLevel(log_level if is_main_process else 'ERROR')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.propagate = False
return logger
def main(args):
# load config
cfg = Config.fromfile(args.py_config)
cfg.work_dir = args.work_dir
logger_mm = MMLogger.get_instance('mmengine', log_level='WARNING')
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=1800))
accelerator_project_config = ProjectConfiguration(
project_dir=cfg.work_dir,
logging_dir=os.path.join(cfg.work_dir, 'logs')
)
accelerator = Accelerator(
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
mixed_precision=cfg.mixed_precision,
log_with=cfg.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs]
)
if accelerator.is_main_process:
accelerator.init_trackers(
project_name='omni-gs',
# config=config,
init_kwargs={
"wandb":{'name': cfg.exp_name},
}
)
# If passed along, set the training seed now.
if cfg.seed is not None:
set_seed(cfg.seed + accelerator.local_process_index)
dataset_config = cfg.dataset_params
max_num_epochs = cfg.max_epochs
# configure logger
if accelerator.is_main_process:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, osp.basename(args.py_config)))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'{timestamp}.log')
if not osp.exists(osp.dirname(log_file)):
os.makedirs(osp.dirname(log_file))
logger = create_logger(log_file=log_file, is_main_process=accelerator.is_main_process)
if logger is not None:
logger.info(f'Config:\n{cfg.pretty_text}')
# build model
from builder import builder as model_builder
my_model = model_builder.build(cfg.model).to(accelerator.device)
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
if logger is not None:
logger.info(f'Number of params: {n_parameters}')
optimizers = my_model.configure_optimizers(cfg.lr)
optimizer = optimizers[0]
#scheduler = get_scheduler(
# cfg.lr_scheduler_type,
# optimizer=optimizer,
# num_warmup_steps=cfg.warmup_steps*accelerator.num_processes,
# num_training_steps=cfg.max_train_steps*accelerator.num_processes,
#)
# consine lr scheduler
warm_up = torch.optim.lr_scheduler.LinearLR(
optimizer,
1 / (cfg.warmup_steps*accelerator.num_processes),
1,
total_iters=cfg.warmup_steps*accelerator.num_processes,
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.max_train_steps*accelerator.num_processes, eta_min=cfg.lr * 0.1)
scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warm_up, scheduler], milestones=[cfg.warmup_steps*accelerator.num_processes])
# generate datasets
dataset = getattr(datasets, dataset_config.dataset_name)
train_dataset = dataset(dataset_config.resolution, split="train",
use_center=dataset_config.use_center,
use_first=dataset_config.use_first,
use_last=dataset_config.use_last)
val_dataset = dataset(dataset_config.resolution, split="val",
use_center=dataset_config.use_center,
use_first=dataset_config.use_first,
use_last=dataset_config.use_last)
train_dataloader = DataLoader(
train_dataset, dataset_config.batch_size_train, shuffle=True,
num_workers=dataset_config.num_workers
)
val_dataloader = DataLoader(
val_dataset, dataset_config.batch_size_val, shuffle=False,
num_workers=dataset_config.num_workers_val
)
my_model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
my_model, optimizer, train_dataloader, val_dataloader, scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / cfg.gradient_accumulation_steps)
# resume and load
epoch = 0
global_iter = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from:
cfg.resume_from = args.resume_from
if cfg.resume_from:
if cfg.resume_from != "latest":
path = os.path.basename(cfg.resume_from)
else:
# Get the most recent checkpoint
dirs = os.listdir(cfg.work_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
if len(dirs) > 0:
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1]
else:
path = None
if path:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(osp.join(cfg.work_dir, path), map_location='cpu', strict=False)
global_iter = int(path.split("-")[1])
first_epoch = global_iter // num_update_steps_per_epoch
resume_step = global_iter % num_update_steps_per_epoch
print(f'successfully resumed from epoch{first_epoch}-iter{global_iter}')
else:
resume_step = -1
print('work dir: ', args.work_dir)
# training
print_freq = cfg.print_freq
while epoch < max_num_epochs:
my_model.train()
data_time_s = time.time()
time_s = time.time()
for i_iter, batch in enumerate(train_dataloader):
# forward + backward + optimize
data_time_e = time.time()
with accelerator.accumulate(my_model):
optimizer.zero_grad()
loss, log, _, _, _, _, _, _, _ = my_model.module.forward(batch, "train", iter=global_iter, iter_end=cfg.max_train_steps)
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(my_model.parameters(), cfg.grad_max_norm)
optimizer.step()
scheduler.step()
# Checks if the accelerator has performed an optimization step behind the scenes
accelerator.wait_for_everyone()
if accelerator.sync_gradients and accelerator.is_main_process:
if global_iter % cfg.save_freq == 0:
if accelerator.is_main_process:
save_file_name = os.path.join(os.path.abspath(args.work_dir), f'checkpoint-{global_iter}')
accelerator.save_state(save_file_name)
dst_file = osp.join(args.work_dir, 'latest')
mmengine.utils.symlink(save_file_name, dst_file)
if logger is not None:
logger.info('[TRAIN] Save latest state dict to {}.'.format(save_file_name))
if global_iter % cfg.val_freq == 0:
my_model.eval()
if accelerator.is_main_process:
for i_iter_val, batch_val in enumerate(val_dataloader):
val_batch_save_dir = osp.join(cfg.output_dir, cfg.exp_name, "validation",
"step-{}/batch-{}".format(global_iter, i_iter_val))
log_val = my_model.module.validation_step(batch_val, val_batch_save_dir)
log.update(log_val)
my_model.train()
time_e = time.time()
# print loss log regularly
if global_iter % print_freq == 0 and accelerator.is_main_process:
lr = optimizer.param_groups[0]['lr']
losses_str = ""
for loss_k, loss_v in log.items():
losses_str += ("%s: %.3f, " % (loss_k, loss_v))
if logger is not None:
logger.info('[TRAIN] Epoch %d Iter %5d/%d: Loss: %.3f, %s grad_norm: %.1f, lr: %.7f, time: %.3f (%.3f)'%(
epoch, i_iter, len(train_dataloader),
loss.item(), losses_str, grad_norm, lr,
time_e - time_s, data_time_e - data_time_s
))
global_iter += 1
# dump loss log to tensorboard
accelerator.log(log, step=global_iter)
data_time_s = time.time()
time_s = time.time()
epoch += 1
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config')
parser.add_argument('--work-dir', type=str)
parser.add_argument('--resume-from', type=str, default='')
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
main(args)